
FULL GROUPS, TOPOLOGICAL RANK, AND COST

FRANÇOIS LE MAÎTRE

Abstract. This is the first part of lecture notes on full groups prepared for the
ESI measured group theory semester. Our main goal is to relate the topological
rank of the full group of a measure-preserving equivalence relation to its cost.
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1. Full groups from Dye’s point of view

Throughout these notes, (X,B) denotes a standard Borel space, i.e. an uncount-
able measured space whose σ-algebra is the Borel σ-algebra of some complete sepa-
rable metric space. The elements of B will be called Borel sets, and we will actually
write a standard probability space (X,B) simply as X.

If X is a standard Borel space and µ is a non-atomic probability measure on the
Borel subsets of X, we say that (X,µ) is a standard probability space. We have
the two following important facts on standard probability spaces (for a proof, see
[Kec95]):

• They are all isomorphic to ([0, 1], λ).
• Every positive measure Borel subset A of X is then itself a standard proba-
bility space for the normalised measure µA defined by: for all Borel B ⊆ A,
µA(B) = µ(B)

µ(A)
.

In most of the arguments, we only need the following basic property of standard
Borel spaces.

Lemma 1.1. Let X be a standard Borel space. There is a countable family (Cn) of
Borel subsets which separates points, meaning that if x 6= y ∈ X then there is n ∈ N
such that x ∈ Cn but y 6∈ Cn.

A bijection T of X is called Borel if T−1(B) is Borel for every Borel set B (this
actually implies that T−1 is Borel, see [Kec95, 14.12]). A fundamental application
of Lemma 1.1 is the following result (see Appendix A for a proof).

Theorem 1.2. Let T1, ..., Tq be Borel bijections of X and A ⊆ X such that for all
x ∈ A and all i 6= j ∈ {1, ..., q} we have Ti(x) 6= Tj(x). Then there is a Borel
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partition (An) of A such that for all i 6= j ∈ {1, ..., q}, Ti(An) is disjoint from
Tj(An).

Most of the time, we will leave it to the reader to check that the constructions we
make are Borel. An important warmup exercise for this is the following.

Exercise 1.3. If A is a countable set, we let |A| ∈ N ∪ {∞} denote its cardinality.
1. Prove that the set of pairwise distinct n-tuples in Xn is Borel.
2. Deduce that the map f : XN → N ∪ {∞} defined by f((xn)) = |{xn : n ∈ N}| is

Borel.

A Borel bijection T : X → X is measure preserving if for all Borel A ⊆ X, one
has µ(T (A)) = µ(A) (then T−1 is also measure-preserving). For a Borel bijection T
of X, we let its support be the Borel set suppT := {x ∈ X : T (x) 6= x}.

Let us remark once and for all that two bijections with disjoint support commute.

Definition 1.4. The group Aut(X,µ) is the group of measure-preserving Borel
bijections of (X,µ), two such bijections T and T ′ being identified if T (x) = T ′(x)
for almost every x ∈ X.

We will often abuse notation by seeing Borel measure-preserving bijections as el-
ements of Aut(X,µ) and vice-versa. Moreover, we can see every measure-preserving
Borel bijection between full measure subsets as an element of Aut(X,µ) via the
following lemma which we will often use implicitly.

Lemma 1.5. Let T : A → B be a measure-preserving Borel bijection between two
full measure Borel subsets of X. Then there is T̃ ∈ Aut(X,µ) such that T̃ (x) = T (x)
for almost every x ∈ X.

Proof. Define C0 = A∩B and then define by induction Cn+1 = T−1(Cn)∩Cn∩T (Cn).
Then C :=

⋂
nCn is a full measure T -invariant Borel subset of X. Define T̃ (x) =

T (x) if x ∈ C and T̃ (x) = x else. �

Since all the standard probability spaces are isomorphic, the group Aut(X,µ) we
have does not depend of the chosen representation of our standard probability space,
in the same way that the unitary group of an infinite dimensional separable Hilbert
space does not really depend of the infinite dimensional separable Hilbert space.

Example 1.6. Consider the circle S1 = R/Z equipped with its Haar measure h
(which is just the pushforward of the Lebesgue measure on [0, 1[ via t 7→ e2iπt). Then
every element z of S1 defines an element Tz ∈ Aut(S1, h) defined by Tz(z′) = zz′.

A big part of ergodic theory is devoted to the study of measure-preserving trans-
formations T ∈ Aut(X,µ) up to conjugacy, where T is conjugate to T ′ if there
is S ∈ Aut(X,µ) such that ST ′S−1 = T . Our focus will actually be on count-
able groups of measure-preserving transformations, but for now, we stick to single
transformations.

Example 1.7. Consider a finite probability space {0, ..., n − 1} and let p be a
non-degenerate probability measure on it; consider the standard probability space
X = {0, ..., n− 1}Z with probability measure µ = p⊗Z. Define T : X → X by

T (f)(k) = f(k − 1)
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for all f : Z→ {0, ..., n− 1} and all k ∈ Z. When n = 2, observe that {0, 1}Z is the
set of subsets of Z and that the action above corresponds to mapping a subset A to
A+ 1.

Using the fact that the measure µ is completely determined by the value it assigns
to basic clopen sets1, it is not hard to show that T ∈ Aut(X,µ). The transformation
T is called a Bernoulli shift with parameter p. One of the greatest achievements
of ergodic theory in the twentieth century is the following theorem of Kolmogorov
and Ornstein: two Bernoulli shifts are conjugate if and only if their parameters have
the same entropy, where the entropy of p is −

∑n
i=1 p({i}) log(p({i})).

Exercise 1.8. We reuse the notation from Example 1.6.
1. Prove that if Tz is conjugate to T ′z in Aut(S1, h) then z and z′ have the same

order as elements of S1.
2. Prove that if z and z′ have order n ∈ N, then Tz and Tz′ are conjugate (Hint:

To simplify notation, we view Tz as an element of Aut([0, 1[, λ). Show that if
z has order n, then the set An = [0, 1/n[ intersects every Tz orbit in exactly
one point (this is called a fundamental domain). Observe that An satisfies that
An, Tz(An), ..., T n−1

z (An) are all disjoint, and use then build a conjugacy by taking
T kz (An) to T kz′(An).)

3. Prove that there are uncountably many conjugacy classes in Aut(X,µ) (Hint:
Prove that in the case z and z′ are of infinite order, Tz is conjugate to Tz′ if and
only if z = z′ or z = z′−1. To see this, consider the Koopman representation2 of
Tz and Tz′ on L2(S1, h) and compute the eigenvalues of the associated unitaries
via Fourier).

We now introduce a useful metric to study of the group Aut(X,µ) and its full
subgroups, as we will shortly see.

Definition 1.9. The uniform metric du on Aut(X,µ) is defined by: for all T, T ′ ∈
Aut(X,µ),

du(T, T
′) = µ({x ∈ X : T (x) 6= T ′(x)}).

Exercise 1.10. Prove that the uniform metric is biinvariant: for every T, U, T1, T2 ∈
Aut(X,µ), we have

du(T, U) = du(T1TT2, T1UT2).

Theorem 1.11. (Aut(X,µ), du) is a complete metric space.

Proof. Let (Tn) be a Cauchy sequence. Up to taking a subsequence, we may assume
that for all n ∈ N, du(Tn, Tn+1) < 1

2n
. Since

∑
1

2n
< +∞, the Borel-Cantelli lemma

ensures us that for almost every x ∈ X there is N ∈ N such that for all n > N we
have Tn(x) = Tn+1(x). For N ∈ N, let

AN = {x ∈ X : TN−1(x) 6= TN(x) and for all n > N, Tn(x) = Tn+1(x)}

1A subset B ⊆ {0, 1}Z is a basic clopen set if it is a set of functions with prescribed values on
finitely many coordinates: there exists m ∈ N, k1, ..., km ∈ Z and l1, ..., lm ∈ {0, ..., n − 1} such
that B = {f ∈ {0, ..., n− 1}Z : f(k1) = l1, ..., f(kn) = lm}.

2Every T ∈ Aut(X,µ) induces a unitary κ(T ) on L2(X,µ) defined by κ(T )f(x) = f(T−1x).
As this exercise shows, such a unitary can sometimes retain a lot of information from T . How-
ever all Bernoulli shifts induce the same unitary up to unitary conjugacy, hence they cannot be
distinguished by that.
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Then the sets AN form a partition of (a full measure subset of) X, and we let
T (x) = TN(x) for x ∈ AN . It is now an instructive exercise to check that such
a T belongs to Aut(X,µ) (see the next lemma for a hint!). Then we clearly have
du(Tn, T )→ 0, hence (Aut(X,µ), du) is complete. �

Let us now isolate the key property of Aut(X,µ) which made the above argument
work.

Definition 1.12. Given a sequence (Tn) of elements of Aut(X,µ) and a Borel par-
tition (An)n∈N of a full measure subset of X, a map T :

⊔
An → X is obtained by

cutting and pasting the sequence (Tn) along (An) if T is injective and for every
n ∈ N and x ∈ An, we have T (x) = Tn(x).

Lemma 1.13. If T is obtained by cutting and pasting the sequence (Tn) along (An),
then T ∈ Aut(X,µ).

Moreover if T : X → X is an injective Borel map such that for all x ∈ X, there is
n ∈ N such that T (x) = Tn(x), then there is a partition (An) such that T is obtained
by cutting and pasting the sequence (Tn) along (An).

Proof. Note that the injectivity of T implies that (Tn(An)) is a partition of X.
Decomposing every Borel subset A of X as A =

⊔
n∈N(A ∩ An) and using the

fact that each Tn preserves the measure, we see that T preserves the measure and
conclude by lemma 1.5 that T ∈ Aut(X,µ).

For the moreover part, let Bn = {x ∈ X : T (x) = Tn(x) and then let An =
Bn \

⋃
m<nAm (note that An is just the set of x such that n is the first integer

satisfying T (x) = Tn(x)). �

Exercise 1.14. An almost partition of X is a sequence of Borel sets (An) such
that µ(An ∩ Am) = 0 for all n 6= m and µ(

⊔
nAn) = 1. Show that if (An) is an

almost partition of X, and (Tn) is a sequence of elements of Aut(X,µ) such that
(Tn(An)) is an almost partition of X, one can still construct a T ∈ Aut(X,µ) by
cutting and pasting the sequence (Tn) along (An).

From now on, we will frequently drop the “almost” adjective. In particular an
almost partition will be the same for us as a partition. We also allow a map to be
only defined on a full measure set (see Lem. 1.5), and we will frequently write that
two Borel sets are equal if they coincide up to measure zero.

Definition 1.15 (Dye). A subgroup G of Aut(X,µ) is full if it is stable under the
cutting and pasting operation: if T ∈ Aut(X,µ) is obtained by cutting and pasting
a sequence (Tn) of elements of G along a partition (An), then T ∈ G.

The exact same proof as for Lemma 1.11 now yields:

Proposition 1.16 (Dye). Every full group is a complete metric space for the uni-
form metric.

So every full group is a closed subgroup of the full group Aut(X,µ). However,
(Aut(X,µ), du) is not separable3 (can you see why?). Our focus will be on those
full groups which are separable for the uniform metric, i.e. those which are Polish
groups for the uniform topology.

3Aut(X,µ) is nevertheless a Polish group for the weak topology (cf. [Kec10]).
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Main example. Let Γ be a countable group. A Γ-action on X is called measure-
preserving if it is an action by Borel bijections such that for all γ ∈ Γ and all Borel
A ⊆ X one has µ(γA) = µ(A). We can associate to this action a full group [RΓ]
defined by

[RΓ] = {T ∈ Aut(X,µ) : T (x) ∈ Γ · x for almost all x ∈ X}.
We will see in section 3 that [RΓ] is separable, so that it has a countable dense
subgroup. Our goal in these lectures will be to understand when it has finitely
generated dense subgroups.

Exercise 1.17. Denote by α : Γ → Aut(X,µ) the homomorphism associated to a
measure-preserving action.
1. Prove that [RΓ] is actually the smallest full group containing α(Γ).
2. Prove that given S ⊆ Aut(X,µ), there exists a smallest full group containing S,

which we will denote by [S].
3. Explain why for a countable group Γ, a measure-preserving action is essentially

the same as a homomorphism Γ→ Aut(X,µ)4.

Let us now prove that full groups are big via a well-known construction: the
induced transformation, also known as the first-return map. It relies on Poincaré’s
recurrence theorem.

Lemma 1.18. Let T ∈ Aut(X,µ) and A be a positive measure Borel subset of X,
then for almost every x ∈ A there exists n > 1 such that T n(x) ∈ A.

Proof. Let B = {x ∈ X : ∀n > 1, T n(x) 6∈ A}. Then for all n > 1, T n(B) is disjoint
from A, hence from B. But since T is injective we deduce that for all n > 1 and all
m > 0, the set T n+m(B) is disjoint from Tm(B), so that (Tm(B))m∈N is an infinite
collection of pairwise disjoint sets, all of the same positive measure, contradicting
the fact that µ is a finite measure. �

So for T ∈ Aut(X,µ) and a Borel A ⊆ X, we have a Borel integer-valued map
nA,T defined for all x ∈ A by

nA,T (x) = min{n > 1 : T n(x) ∈ A}.
We then define the transformation induced by T on A, denoted by TA : X → X, by

TA(x) =

{
T nA,T (x)(x) if x ∈ A

x else.
Note that the transformation induced by T is obtained by cutting and pasting powers
of T , in particular it belongs to any full group containing T .

Theorem 1.19 (Keane). Full groups are contractible for the uniform topology.

Proof. Let G be a full group. We may assume that X = [0, 1] equipped with the
Lebesgue measure. A homotopy H such that H(0, T ) = idX and H(1, T ) = T for
all T ∈ G is given by: for all t ∈ [0, 1] and all T ∈ Aut(X,µ)

H(t, T ) = T[0,t]

Exercise 1.20. Prove that H is indeed continuous. �
4This fact is very wrong for the much bigger group Aut(X,µ): every measure-preserving Borel

action of Aut(X,µ) on a standard probability space has a set of fixed points of full measure! See
[GTW05].
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Corollary 1.21. Every non-trivial full group is uncountable.

Proof. If G were countable, then by the Baire category theorem it would have an
isolated point. �

We will now see how to concretely build many elements of a non-trivial full group.

2. Aperiodic and periodic elements

Definition 2.1. A transformation T ∈ Aut(X,µ) is periodic if it has only finite
orbits, and aperiodic if it has only infinite orbits.

More generally, a measure-preserving Γ-action is called aperiodic if it has only
infinite orbits and periodic if it has only finite orbits.

Exercise 2.2. Explain why if T ∈ Aut(X,µ) satisfies that for almost every x ∈ X,
the T -orbit of x is finite (respectively infinite), then one can still think of T as a
periodic (resp. aperiodic) element.

Lemma 2.3. Let Γ y X be a Borel aperiodic action. Then there exists a decreasing
sequence of Borel sets (An) such that each An intersects every Γ-orbit infinitely many
times, but

⋂
n∈NAn = ∅.

Proof. The proof is a kind of measurable version of the Bolzano-Weierstrass con-
struction. We only use the fact that X has a countable family of Borel sets (Cn)n>1

which separates points.
We first define by recurrence a decreasing sequence of Borel set (Bn)n∈N such that

each Bn interesects every Γ-orbit infinitely many times: we let B0 = X and then
Bn+1 ={x ∈ Bn : Γx ∩Bn ∩ Cn+1 is infinite}

t {x ∈ Bn \ Cn+1 : Γx ∩Bn ∩ Cn+1 is finite}.
Note that by construction for every x ∈ X the infinite set Bn+1∩Γx is either a subset
of Cn+1 or of its complement. Since the family (Cn)n>1 is moreover separating, the
set A :=

⋂
n∈NBn intersects every Γ-orbit in at most one point.

The sequence of sets (An) defined by An = Bn \ A is now as desired.

Exercise 2.4. Prove that An is indeed Borel. �

Exercise 2.5. Suppose now that Γ y X is a periodic Borel action. Let B0 = X
and define inductively

Bn+1 ={x ∈ Bn : Γx ∩Bn ∩ Cn+1 is non empty}
t {x ∈ Bn \ Cn+1 : Γx ∩Bn ∩ Cn+1 is empty}.

Show that the set A =
⋂
n∈NBn is a Borel fundamental domain for the Γ-action,

meaning that it intersects every Γ-orbit in exactly one point.

Theorem 2.6. Let G be a full group. Then the set of periodic elements is dense in
G.

Proof. Let T ∈ G, consider the T -invariant Borel set A of points whose T -orbit is
infinite. If µ(A) = 0 then T is periodic and there is nothing to prove. If not, we
only have to show that the restriction of T to A can be uniformly approximated by
periodic elements of the full group of the restriction of T to A.

In other words, we may and do assume that T is aperiodic. Let ε > 0, we will
show that there is a periodic S ∈ [T ] such that du(T, S) < ε. By Lemma 2.3 there is
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a decreasing family of Borel sets (An) intersecting every T -orbit whose intersection
is emtpy. Since µ is finite, we have µ(An) → 0. So we may find a Borel A ⊆ X
intersecting every T -orbit such that µ(A) < ε.

By considering the set
⋂
n∈Z T

n
A(A) which has the same measure as A, we see that

for almost every x ∈ A, there are infinitely many positive n such that T n(x) ∈ A
as well as infinitely many negative n such that T n(x) ∈ A. Since A intersects
every T -orbit, this is actually true of almost every x ∈ X. It is then easily checked
that this implies S := TT−1

A is periodic. But by construction du(idX , T
−1
A ) < ε so

du(T, TT
−1
A ) < ε as desired. �

Corollary 2.7. Let G be a full group. Then the involutions of G generate a dense
subgroup of G.

Proof. By the above theorem, it suffices to show that every periodic element can
be approximated by a product of involutions. Call T ∈ Aut(X,µ) a cycle if there
exists n ∈ N such that every T -orbit is either trivial or of cardinality n.

Let T ∈ G, for every n > 2 and x ∈ X, let Tn(x) = T (x) if the T -orbit of x
has cardinality n, and Tn(x) = x otherwise. Then the Tn’s are cycles with disjoint
support, and

T = lim
n→+∞

T2 · · ·Tn.

The theorem now follows from the following:

Exercise 2.8. Show that every cycle is a product of two involutions. Hint: use
exercise 2.5, and first prove it for a cycle in a finite symmetric group. �

We will see in section ?? how Corollary 2.7 is useful to build countable dense
subgroups in full groups.

3. Measure-preserving equivalence relations and cost

From now on, we shall only be interested in full groups coming from measure-
preserving actions of countable groups. Γ will always denote a countable group act-
ing on (X,µ) by measure-preserving transformations.

Our aim in this section is to properly introduce measure-preserving equivalence
relations, and to show that their full groups are separable.

Definition 3.1. Given a measure-preserving Γ-action, we associate to it an equiv-
alence relation RΓ ⊆ X ×X defined by

(x, x′) ∈ RΓ whenever x ∈ Γx′.

Recall that we also associated to such an action a full group [RΓ]. The notation
is justified by the fact that we ca define this full group purely in terms of the
equivalence relation RΓ:

[RΓ] = {T ∈ Aut(X,µ) : (T (x), x) ∈ RΓ for almost all x ∈ X}.

Exercise 3.2. Prove that RΓ is Borel. Show that every injective Borel map T :
X → X such that for all x ∈ X, (T (x), x) ∈ RΓ is actually an element of Aut(X,µ).

By the previous exercise, RΓ satisfies the following definition.
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Definition 3.3. A measure-preserving equivalence relation is a Borel subset R ⊆
X×X which is an equivalence relation with countable equivalence classes, such that
for every injective Borel map T : X → X with (T (x), x) ∈ R for almost all x ∈ X,
we actually have T ∈ Aut(X,µ).

For a subset A ⊆ X ×X, the vertical section above x ∈ X is the set Ax := {y ∈
X : (x, y) ∈ A}. Here is a difficult theorem, followed by its main consequence for
us.

Theorem 3.4 (Lusin-Novikov). Let A ⊆ X × X be a Borel set with countable
vertical sections . Then the projection B of A on the first coordinate is Borel and
there is a countable family of Borel functions fn : B → X such that A is the reunion
of the graphs of the functions fn.

Theorem 3.5 (Feldman-Moore). For every measure-preserving equivalence relation
R, there is a measure preserving action of a countable group Γ on X such that
R = RΓ

Exercise 3.6. Deduce Theorem 3.5 from Theorem 3.4. Hint: Use the above result
to first cover R by graphs of injective partially defined Borel maps, and then use
Lemma A.1 to produce involutions.

Let R be a measure-preserving equivalence relation. It is useful to think of R as
a groupoid for the multiplication (x, y)(y, z) = (x, z) and inversion (x, y)−1 = (y, x).
We then have the following analogue of the counting measure on a countable group.

Definition 3.7. The Haar measure M is defined on the Borel subsets A of R by:

M(A) =

∫
X

|Ax| dµ(x),

where |·| denotes the counting measure.

Exercise 3.8. Check that x 7→ |Ax| is Borel. Hint: see Exercise 1.3.

For any Borel function f : X → X such that (x, f(x)) ∈ R for all x ∈ X, its graph
Gf := {(x, f(x)) : x ∈ X} has measure 1 (in particular this applies to elements of
[R]!). By the Lusin-Novikov theorem, we thus have the following proposition.

Proposition 3.9. (R,M) is a σ-finite standard measured space.

In particular L2(R,M) is a separable Hilbert space. The map [R] → L2(R,M)
which associate to T ∈ [R] the characteristic function of its graph χGT

is a homeo-
morphism on its image since

du(T, T
′) =

1

2
M(GT 4GT ′) =

1

2
‖χGT

− χGT
‖2

Since every subspace of a separable metric space is separable, we can conclude.

Theorem 3.10. The full group of any measure-preserving equivalence relation is
separable for the uniform metric.

We will see later some tools which allow to prove the above theorem directly.

Exercise 3.11. Prove the converse: every separable full group is the full group of
a measure-preserving equivalence relation.
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We end this section with a first definition of cost and let the reader figure out
what in means for a subset of R to generate the groupoid R.

Definition 3.12. The cost of a measure-preserving equivalence relation is the infi-
mum of the measures of its generating Borel subsets.

Exercise 3.13. Show that if R = RΓ and Γ is finitely generated, then the cost of
R is bounded above by the rank of Γ (i.e. the minimal number of elements needed
to generate Γ).

4. Orbit equivalence for countable groups

We have see than separable full groups naturally arise from measure-preserving
actions of countable groups. It is now time to give some examples of these. Before
we do that, let us just introduce the relevant terminology.

Definition 4.1. A measure-preserving action of a countable group Γ on (X,µ) is
free if for all γ ∈ Γ \ {e}, we have µ({x ∈ X : γx = x}) = 0. It is ergodic if for
every Borel set A ⊆ X such that γA = A for all γ ∈ Γ, one must have µ(A) = 0 or
µ(A) = 1.

Example 4.2. (Bernoulli shifts, revisited) Bernoulli shifts are probably the most
fundamental examples since they make sense for any countable group Γ. Consider
the standard Borel space X = {1, ..., n}Γ, fix a non-degenerate probability measure
p on {1, ..., n} and equip X with the probability measure µ =

⊗
γ∈Γ p. Then we have

a measure preserving Γ-action on (X,µ) given by for all γ ∈ Γ, all f : Γ → {0, 1}
and all g ∈ Γ,

γ · f(g) = f(γ−1g).

Moreover, it is ergodic (see e.g. [KM04, Ex. 3.1]) as well as free (can you see why?).
One can generalize this construction as follows: start from a Γ action on a count-

able set I and consider the natural action of Γ on (BI , ν⊗I). Provided the measure
ν is non-trivial, we always get a measure-preserving action which is ergodic when
the Γ-action on I has only infinite orbits and free if every non-trivial element of Γ
moves infinitely many points (see [KT08, sec. 2]).

Exercise 4.3. Given a countable dense subgroup Γ of a compact metrisable groupG,
show that the action of Γ by left translation on G equipped with its Haar probability
measure h is an ergodic free action. Hint: Show that the G-action on the measure
algebra5 MAlg(G, h) is continuous. Deduce that every Γ-invariant Borel set is almost
G-invariant (µ(gA4 A) = 0 for all g ∈ G), and conclude using Fubini.

Actions as in the previous exercise are called compact actions. Here are some
examples of compact actions:

(1) The action of Z on S1 by translation by some irrational rotation.
(2) The action of

⊕
n∈N Z/2Z by translation on

∏
n∈N Z/2Z.

5The measure algebra of a standard probability space (X,µ) is the algebra of Borel subsets,
where two such sets A,B are identified when µ(A4B) = 0. We denote it by MAlg(X,µ). It is a
(complete separable) metric space for the distance dµ(A,B) = µ(A4 B). Here you need to show
that if g is sufficiently close to g′ and A is sufficiently close to B then gA is close to g′B. Since
the G-action on MAlg(G, h) is isometric you actually only need that if g is sufficiently close to g′
then gA is close to gA′. Hint: First show it for closed sets using a compatible metric.



10 FRANÇOIS LE MAÎTRE

(3) The action of a residually finite group on its profinite completion. This is a
special case of profinite actions, which we won’t discuss here.

Example 4.4. For n > 2, the action of Sln(Z) on Rn/Zn is free and ergodic. (see
[BM00, 1.4(ii)]).

Definition 4.5. Let Γ and Λ be two countable groups acting on (X,µ). Their
actions are conjugate if there exists T ∈ Aut(X,µ) and a group isomorphism
γ 7→ λγ between Γ and Λ such that for all γ ∈ Γ and almost all x ∈ X,

T (γx) = λγx.

Note that conjugacy as defined in section 1 for elements of Aut(X,µ) is not exactly
the same as here. Indeed, since Z’s only non-trivial automorphism n 7→ −n, two
transformations T, T ′ ∈ Aut(X,µ) define conjugate Z-actions if and only if they are
flip conjugate: either T is conjugate to T ′ or T is conjugate to T ′−1.

In orbit equivalence theory, we forget about the action and care about the partition
of the space into orbits it induces.

Definition 4.6. Let Γ and Λ be two countable groups acting on (X,µ). Their
actions are orbit equivalent if there exists T ∈ Aut(X,µ) such that for almost all
x ∈ X,

T (Γx) = Λx.

Since RΓ retains the partition into orbits induced by an action, the above defini-
tion makes sense for measure-preserving equivalence relations. So we similarly say
two measure-preserving equivalence relations R and S on (X,µ) are orbit equivalent
if there is T ∈ Aut(X,µ) such that for almost all x ∈ X,

T ([x]R) = [T (x)]S .

The map T is then called an orbit equivalence between R and S. The following
exercise is of fundamental importance for us, since it tells us that full groups are
invariants of orbit equivalence as topological groups.

Exercise 4.7. Prove that T ∈ Aut(X,µ) is an orbit equivalence between R and S
if and only if T [R]T−1 = [S].

Note that ergodicity of a Γ-action is an invariant of orbit equivalence since it can
be recast by saying RΓ: a measure preserving equivalence relation R is ergodic if
any Borel set which is a reunion of R-classes has measure zero or one.

The fact that RΓ comes from a free action cannot be seen by just looking at RΓ

a priori. Nevertheless, “coming from a free action” is a non trivial invariant of orbit
equivalence as per the following result.

Theorem 4.8 (Furman). There exists an ergodic measure-preserving equivalence
relation R which is never form R = RΓ for a free Γ-action.

Let us end this section by quoting some other famous theorems on orbit equiva-
lence.

Theorem 4.9 (Ornstein-Weiss). Any two ergodic actions of amenable groups are
orbit equivalent.

Theorem 4.10 (Epstein). Any countable non-amenable group admits a continuum
of pairwise non orbit equivalent free ergodic actions.
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Theorem 4.11 (Gaboriau). Given a free action of Fn, we have Cost(RFn) = n.
In particular, for all n,m ∈ N, if a free action of Fn is orbit equivalent to free

action of Fm then m = n.

5. Topological rank for full groups: the question

Definition 5.1. Let G be a separable topological group. The topological rank of G
is the (possibly infinite) minimal number n such that there are g1, ..., gn ∈ G which
generate a dense subgroup of G.

As an example, we have t(S1) = 1. More generally, by a theorem of Kronecker
t(Rn/Zn) = 1. Here is an instructive example.

Lemma 5.2. We have t(Rn) = n+ 1.

Proof. Recall that one needs at least n elements to generate Rn as a vector space.
Since every vector subspace of Rn is closed, we deduce that t(Rn) > n. Moreover
equality cannot hold: if x1, ..., xn generate a dense subgroup of Rn, they form a basis
of Rn. Hence up to a change of coordinates the group they generate is Zn 6 Rn which
is discrete, a contradiction. So t(Rn) > n + 1. By lifting a topological generator of
Rn/Zn and taking the standard basis of Rn, we conclude that t(Rn) = n+ 1. �

Consider a measure-preserving action of a countable group Γ. By Exercise 4.7,
the topological rank of full group of [RΓ] is an invariant of orbit equivalence

Question 1 (Kechris). What are the possible values for t([RΓ])?

In these notes, we will completely answer the above question and compute the
topological rank of [RΓ] in the ergodic case, building up on earlier work of Kittrel-
Tsankov. The formula we will obtain is analogous to Lemma 5.2 where the vector
space rank is replaced by the cost.

We now make a fundamental remark which we will reinforce in section ??.

Exercise 5.3. Prove that if Λ 6 [RΓ] is dense, then Γ · x = Λ · x for almost every
x ∈ X. Show that this implies that up to a restriction to a full measure Borel set,
RΓ = RΛ.

We have seen that if an equivalence relationR is generated by a measure-preserving
action of an n-generated group Γ, then its cost is bounded above by n (Exercise 3.13).
So by Exercise 5.3, we have the inequality

t([R]) > Cost(R).

We will see in the next section that the equality cannot hold so that t([R]) >
bCost(R)c+ 1 (Prop. ??).

For now, we explore a bit further the topological rank.

Theorem 5.4 (Schreier-Ulam). If G is a compact connected metrisable group, there
is a dense set of couples (g, g′) ∈ G2 such that 〈g, g′〉 is a dense subgroup of G.

In particular, the topological rank of a compact connected metrisable group is
bounded by 2, and one can further show that it is equal to 1 iff the compact group
is abelian.

Definition 5.5. A topological group is infinitesimally finitely generated if there
exists n ∈ N such that every neighborhood of the identity contains n elements which
generate a dense subgroup.
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Theorem 5.4 implies that compact metrisable connected groups are infinitesimally
finitely generated.

A topological group is called non-archimedean if it has a neighborhood basis
of the identity made of subgroups. This is clearly in sharp opposition with being
infinitesimally finitely generated.

The following relaxed version was introduced recently by the author and Gelander.

Definition 5.6. A topological group G is quasi-non-archimedean if for every
neighborhood of the identity U and every n ∈ N, there exists a neighborhood of
the identity V such that for every g1, ..., gn ∈ V , the group generated by g1, ..., gn is
contained in U .

Note that every non-archimedean group is totally disconnected, but as the next
exercise shows there are connected quasi-non-archimedean Polish groups!

Exercise 5.7. Prove that full groups are quasi-non-archimedean, and that the only
topological group which is both quasi-non-archimedean and infinitesimally finitely
generated is the trivial group.

This exercise shows that one cannot find topological generators for full groups “at
random” in the sense of Baire category. However for a cost one aperiodic equivalence
relation, if a first element is chosen at random among aperiodic elements of the full
group and a second at random in the whole full group, then we almost surely get a
pair which generates a dense subgroup of the full group (see [LM15, Thm. 1.7]).

The following result was obtained with Gelander, and is a very convoluted way of
proving that full groups of the form [RΓ] are never locally compact!

Theorem 5.8. Let G be a locally compact Polish group. Then G is quasi-non-
archimedean if and only if G is totally disconnected. Furthermore, G is connected if
and only if G is infinitesimally finitely generated.

Exercise 5.9. Prove directly that no non-trivial full group is locally compact. Hint:
Take an involution and show that the full group it generates is not locally compact
by using a fundamental domain for the involution (cf. Corollary 2.7 and Exercise
2.5).

Appendix A. Disjointness in standard Borel sets

Here X is simply a standard Borel space. Our aim is to show that the condition
T (x) 6= x can actually be “zoomed out” to the condition that T (A) is disjoint from
A for some sufficiently big Borel set A containing x. For a Borel map T : X → X,
we still denote its support by suppT = {x ∈ X : T (x 6= x}.

Lemma A.1. Let T : X → X be a Borel map. There is a partition (An) of suppT
into Borel sets such that T (An) is disjoint from An for all n ∈ N.

Proof. There is a countable family C of Borel sets which separates points. Then the
algebra (no σ here!) D generated by

⋃
n∈Z T

n(C) is countable and T -invariant.
We then let A be the set of A ∈ D such that T (A) is disjoint from A. Let us

prove that A is a cover X: for x ∈ X since D is separating there is C ∈ D such
that x ∈ C but T (x) 6∈ C. Then x ∈ T−1(X \ C) ∩ C and T−1(X \ C) ∩ C ∈ A by
definition.
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Enumerate A = {Bn : n ∈ N} and finally let An = Bn \ (
⋃
m<nBm). We still have

T (An) disjoint from An for all n ∈ N, the sequence (An) still covers X, but it is now
made of disjoint sets as desired. �

By taking intersections, we deduce that for a finite family of Borel bijections
(Ti)

p
i=1, there is a partition (An) of the intersection of their supports such that for

all i = 1, ..., p and all n, Ti(An) is disjoint from An. We upgrade this to the following
lemma.

Theorem A.2. Let T1, ..., Tq be Borel bijections of X and A ⊆ X such that for
all x ∈ A and all i 6= j ∈ {1, ..., q} we have Ti(x) 6= Tj(x). Then there is a Borel
partition (An) of A such that for all i 6= j ∈ {1, ..., q}, Ti(An) is disjoint from
Tj(An).

Proof. Consider the finite family (T−1
i Tj)i<j. Then the support of every T−1

i Tj
contains A by assumption, so by the above paragraph there is a countable Borel
partition (An) of A such that for all i < j and all n, T−1

i Tj(An) is disjoint from An.
We conclude that for all i < j and all n, Ti(An) is disjoint from Tj(An). �
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