TD bonus

Exercice 1. Algèbres booléennes.

Une **algèbre booléenne** est un anneau unifère $(A, +, \cdot, 0, 1)$ tel que pour tout $a \in A$, on a $a \cdot a = a$ (tout élément est idempotent).

- 1. On va commencer par quelques exemples d'algèbres booléennes.
 - (a) Soit X un ensemble. Vérifier que $(\mathcal{P}(X), \Delta, \cap, \emptyset, X)$ est une algèbre booléenne.
 - (b) Soit X un compact, soit $\mathcal{OF}(X)$ l'ensemble de ses ouverts-fermés. Montrer que $\mathcal{OF}(X)$ est une sous-algèbre (booléenne) de $\mathcal{P}(X)$.
 - (c) Soit \mathcal{P} un ensemble de variables propositionnelles, on considère le quotient $\mathcal{F}_{\mathcal{P}}$ de l'ensemble des \mathcal{P} -formules du calcul propositionnel par l'équivalence logique. Montrer que les opérations "ou exclusif" (noté +) et conjonction (notée \wedge) passent au quotient et définissent une structure d'algèbre de Boole sur $\mathcal{F}_{\mathcal{P}}$, appelée algèbre du calcul propositionnel sur \mathcal{P} .
- 2. Soit A une algèbre booléenne. Montrer que pour tout $a, b \in A$ on a a + a = 0 et ab = ba.
- 3. Soit A une algèbre booléenne. On définit une relation \leq sur A par $a \leq b$ ssi ab = a.
 - (a) Vérifier que \leq définit une relation d'ordre (non stricte) où 0 est le minimum de A est 1 le maximum. Cet ordre est-il total?
 - (b) Montrer que toute famille finie d'éléments de A possède un suprémum (plus petit majorant) et un infimum (plus grand minorant). Les identifier dans les trois exemples précédents.
- 4. On dit que $a \in A$ est un **atome** si $a \neq 0$ et si le seul élément plus petit que a est 0.
 - (a) Quels sont les atomes de $\mathcal{P}(X)$?
 - (b) Montrer que si \mathcal{P} est un ensemble infini de variables propositionnelles, l'algèbre du calcul propositionnel sur \mathcal{P} est sans atomes.
 - (c) Montrer que toute algèbre de Boole finie est atomique, c'est à dire que tout élément est minoré par un atome. En déduire que toute algèbre de Boole finie est isomorphe à l'algèbre des parties d'un ensemble fini.
 - (d) En utilisant un va-et-vient, montrer que toutes les algèbres booléennes dénombrables sans atomes sont isomorphes.

Exercice 2. Définissabilité des connecteurs, système complet de connecteurs.

On se place dans le cadre du calcul propositionnel. On dit que le connecteur c d'arité n est définissable à partir des connecteurs c_1, \ldots, c_k s'il existe une formule en les variables propositionnelles p_0, \ldots, p_{n-1} n'utilisant que les connecteurs c_1, \ldots, c_k et qui est équivalente à $c(p_0, \ldots, p_{n-1})$. On dit qu'un système de connecteurs $\{c_1, \ldots, c_k\}$ est complet si tout connecteur est définissable à partir de c_1, \ldots, c_k .

- 1. Montrer que \vee est définissable à partir de \wedge et \neg .
- 2. Montrer que le système $\{\lor, \neg\}$ est complet.
- 3. Montrer que le système $\{\Leftrightarrow,\neg\}$ n'est pas complet.
- 4. Trouver un système à 8 connecteurs binaires (2 à 2 distincts) qui n'est pas complet.
- 5. Trouver un système à 128 connecteurs ternaires (2 à 2 distincts) qui n'est pas complet.

Exercice 3. Paradoxe de Banach-Tarski.

On se propose de démontrer le paradoxe de Banach-Tarski en admettant son prédécesseur : le paradoxe de Hausdorff. Commençons par un peu de terminologie : deux sous-ensembles A et B de \mathbb{R}^3 sont dits **puzzle-équivalents** s'il existe deux partitions $(A_1, ..., A_n)$ et $(B_1, ..., B_n)$ de A et B respectivement et des isométries de \mathbb{R}_3 $\varphi_1, ..., \varphi_n$ telles que pour tout $i \in \{1, ..., n\}$, on ait $\varphi_i(A_i) = B_i$. On note $A \sim_{PE} B$ si A et B sont puzzle-équivalents. Nous pouvons maintenant énoncer le paradoxe de Hausdorff, que nous admettrons.

Théorème (Hausdorff, 1914). Il existe une partie dénombrable D de la sphère unité \mathbb{S}^2 et une partition $\mathbb{S}^2 \setminus D = A \sqcup B$ telle que $A \sim_{PE} B \sim_{PE} \mathbb{S}^2 \setminus D$. De plus, on peut implémenter cette puzzle-équivalence avec uniquement des isométries fixant le centre de la sphère unité.

On note $A \lesssim_{PE} B$ s'il existe une partie $C \subseteq B$ telle que $A \sim_{PE} B$.

- 1. Montrer que la relation \lesssim_{PE} est une relation de préordre (réflexive et transitive). Est-elle totale?
- 2. Montrer que si $A \lesssim_{PE} B$ et $B \lesssim_{PE} A$ alors $A \sim_{PE} B$. En déduire que \sim_{PE} est une relation d'équivalence (on aurait aussi pu le montrer directement).
- 3. Montrer que si D est un sous-ensemble dénombrable de la sphère, alors on peut trouver une rotation R telle que les ensembles $(R^i(D))_{i\in\mathbb{N}}$ soient tous disjoints (on pourra fixer un axe de rotation A ne contenant aucun élément de D puis montrer que l'ensemble des angles de rotation $\theta \in [0, 2\pi[$ tels que la rotation $R_{A,\theta}$ ne satisfait pas la propriété voulue est dénombrable).
- 4. Montrer que si R et D sont comme dans la question précédente, alors

$$\bigsqcup_{i=0}^{+\infty} R^i(D) \sim_{PE} \bigsqcup_{i=1}^{+\infty} R^i(D).$$

En déduire que $\mathbb{S}^2 \setminus D \sim_{PE} \mathbb{S}^2$.

- 5. Montrer qu'il existe une partition $\mathbb{S}^2 = A \sqcup B$ telle que $A \sim_{PE} B \sim_{PE} \mathbb{S}^2$.
- 6. En déduire qu'il existe une partition de la boule unité fermée privée de son centre $\mathbb{B}^2 \setminus \{0\} = A \sqcup B$ avec $A \sim_{PE} B \sim_{PE} \mathbb{B}^2 \setminus \{0\}$
- 7. En utilisant un argument similaire à la question 3, montrer que si $x \in \mathbb{S}^2$, alors $\mathbb{B}^2 \setminus \{x\} \sim_{PE} \mathbb{B}^2$.
- 8. Conclure qu'il existe une partition $\mathbb{B}^2 = A \sqcup B$ telle que $\mathbb{B}^2 \sim_{PE} A \sim_{PE} B$. En déduire le paradoxe de Banach-Tarski tel qu'énoncé ci-dessous.

Théorème (Banach-Tarski, 1924). Soient B_1 et B_2 deux boules unité fermées disjointes dans \mathbb{R}^3 . Alors $B_1 \sim_{PE} B_1 \sqcup B_2$.

- 9. Montrer que toute réunion finie de boules unité fermées est puzzle-équivalente à la boule unité fermée.
- 10. Démontrer le théorème suivant de Banach et Tarski, moins connu mais plus fort que l'énoncé précédent.

Théorème (Banach-Tarski, 1924). Soient E_1 et E_2 deux parties bornées de \mathbb{R}^3 et d'intérieur non vide, alors $E_1 \sim_{PE} E_2$.