DM1 - à rendre le 11 octobre

Dans tout l'énoncé, sauf mention explicite du contraire, on se place dans ZF.

Exercice 1. Construction par récurrence transfinie.

Montrer directement que tout ensemble bien ordonné est isomorphe à un ordinal en utilisant une construction par récurrence transfinie de l'isomorphisme.

Exercice 2. Retour sur la somme et le produit d'ordinaux.

Montrer l'équivalence des deux définitions de l'addition et de la multiplication des ordinaux données en cours.

Exercice 3. Contre-exemples sur l'arithmétique des ordinaux.

Donner des contre-exemples pour les propriétés suivantes :

- 1. Commutativité de l'addition et de la multiplication;
- 2. $(\alpha + \beta)\gamma = \alpha\gamma + \beta\gamma$;
- 3. $\lambda \alpha = \sup_{\xi < \lambda} \xi \alpha$, λ limite.

Exercice 4. Axiome de l'infini.

Pour $n \in \omega$, on note V_n l'ensemble $\underbrace{\mathcal{P}(\mathcal{P}(....\mathcal{P}(\emptyset)...)}_{n}$.

- 1. Justifier proprement l'existence de V_n .
- 2. Montrer que pour tout $n \in \omega$, $V_n \subseteq V_{n+1}$;
- 3. Justifier l'existence de $V_{\omega} = \bigcup_{n \in \omega} V_n$. Les ensembles dans V_{ω} s'appellent héréditairement finis.
- 4. Montrer que V_{ω} est un ensemble transitif;
- 5. Montrer que (V_{ω}, \in) est un modèle de ZF Inf;
- 6. Pour chaque entier n, montrer que $n \in V_{\omega}$. Quel est le plus petit $m \in \omega$ tel que $n \in V_m$?
- 7. Montrer que (V_{ω}, \in) ne satisfait pas l'axiome de l'infini.

Exercice 5. Théorème de Cantor-Bernstein.

Prouver le théorème de Cantor-Bernstein en suivant la preuve donnée dans Wikipédia sans utiliser l'axiome de l'infini.