Compléments sur la convergence uniforme : intégration

François Le Maître

16 septembre 2024

On a vu en cours l'énoncé suivant, mais on a seulement montré la convergence simple. On va prouver la convergence uniforme, qui n'est pas beaucoup plus difficile. On rappelle que le fait que la formule définissant F ci-dessous utilise le fait que f est continue, car sinon on ne saurait pas que l'intégrale est bien définie.

Théorème 1. Soit a < b et une suite de fonctions $f_n : [a,b] \to \mathbb{R}$ continues convergeant uniformément vers $f : [a,b] \to \mathbb{R}$. Fixons $x_0 \in [a,b]$ et définissons $F_n : [a,b] \to \mathbb{R}$ par : pour tout $x \in [a,b]$,

$$F_n(x) = \int_{x_0}^x f_n(t)dt.$$

Alors $F_n \xrightarrow{u} F$ où F est la primitive de f donnée par : pour tout $x \in [a,b]$, $F(x) = \int_{x_0}^x f(t)dt$.

Remarque. Autrement dit, F_n est la primitive de f_n qui s'annule en x_0 et F est la primitive de f qui s'annule en x_0 .

Avant de commencer la preuve, on rappelle l'inégalité suivante, fondamentale : pour tous a < b et toute $g : [a, b] \to \mathbb{R}$ continue,

$$\left| \int_{a}^{b} g(t)dt \right| \le \int_{a}^{b} |g(t)| dt$$

Preuve du théorème 1. Soit $\epsilon > 0$. Alors $\frac{\epsilon}{b-a} > 0$, et comme $f_n \xrightarrow{u} f$ on a $N \in \mathbb{N}$ tel que pour tout $n \geq N$, on a que pour tout $x \in [a,b]$, on a $|f_n(x) - f(x)| < \frac{\epsilon}{b-a}$. Pour $n \geq N$ et $x \in [a,b]$ avec $x \geq x_0$, calculons

$$|F(x) - F_n(x)| = \left| \int_{x_0}^x f(t)dt - \int_{x_0}^x f_n(t)dt \right|$$

$$= \left| \int_{x_0}^x (f(t) - f_n(t))dt \right|$$

$$\leq \int_{x_0}^x |f(t) - f_n(t)| dt$$

$$< \int_{x_0}^x \frac{\epsilon}{b - a} dt = \epsilon \frac{x - x_0}{b - a}$$

Or $0 \le x - x_0 \le b - a$ donc $\epsilon \frac{x - x_0}{b - a} \le \epsilon$, et donc on a bien $|F(x) - F_n(x)| < \epsilon$. De même si $x \le x_0$, en utilisant que $\int_{x_0}^x (f(t) - f_n(t)) dt = -\int_x^{x_0} (f(t) - f_n(t)) dt$, on obtient

$$|F(x) - F_n(x)| \le \int_x^{x_0} |f(t) - f_n(t)| dt < \epsilon$$

comme voulu.

L'énoncé suivant est une conséquence importante du théorème précédent.

Théorème 2. Soient a < b et une suite de fonctions $f_n : [a,b] \to \mathbb{R}$ de classe \mathcal{C}^1 dont les dérivées f'_n convergent uniformément vers une fonction g. Supposons en outre qu'on a $x_0 \in [a,b]$ tel que $f_n(x_0)$ converge vers $l \in \mathbb{R}$. Alors f_n converge uniformément vers f de classe \mathcal{C}^1 qui est l'unique primitive de g qui vaut l en x_0 .

La preuve s'appuie sur le lemme suivant, dont on laisse la preuve en exercice.

Lemme 3. Si une suite (u_n) converge vers l, alors la fonction constante égale à u_n converge uniformément vers la fonction constante égale à l.

Preuve du théorème 2. Posons $f(x) = l + \int_{x_0}^x g(t)dt$, alors f est la primitive de g qui vaut l en x_0 . Soit alors h_n la fonction constante égale à $f_n(x_0)$, alors par hypothèse et le lemme précédent, h_n converge uniformément vers la fonction constante égale à l, que l'on note h. Soit j_n la fonction donnée par $j_n(x) = \int_{x_0}^x f'_n(t)dt$, alors d'après le théorème 1, si on pose $j(x) = \int_{x_0}^x g(t)dt$ alors $j_n \stackrel{u}{\to} j$.

Remarquons que pour tout $x \in [a, b]$, on a d'après le théorème fondamental du calcul intégral que $f_n(x) = f_n(x_0) + \int_{x_0}^x f'_n(t)dt = h_n(x) + j_n(x)$. Autrement dit, $f_n = h_n + j_n$ et comme $h_n \stackrel{u}{\to} h$ et $j_n \stackrel{u}{\to} j$, on a par somme que $h_n + j_n \stackrel{u}{\to} h + j$, autrement dit $f_n \stackrel{u}{\to} f$ comme voulu.