Compléments sur la convergence uniforme : sommes et produits

François Le Maître

12 septembre 2024

Voici un énoncé qu'on a vu mais pas prouvé, qui peut se résumer en : la somme de deux limites uniformes est la limite uniforme des sommes.

Proposition 1. Soit $I \subseteq \mathbb{R}$, et pour $n \in \mathbb{N}$ soient $f_n : I \to \mathbb{R}$ et $g_n : I \to \mathbb{R}$. Supposons que $f_n \stackrel{u}{\to} f$ et $g_n \stackrel{u}{\to} g$. Alors $f_n + g_n \stackrel{u}{\to} f + g$.

Démonstration. Il va s'agir d'estimer la valeur absolue de la différence suivante, où $x \in I$ et $n \in \mathbb{N}$: $f_n(x) + g_n(x) - (f(x) + g(x)) = (f_n(x) - f(x)) + (g_n(x) - g(x))$. On applique l'inégalité triangulaire : pour tout $x \in I$ et tout $n \in \mathbb{N}$, on a

$$|f_n(x) + g_n(x) - (f(x) + g(x))| \le |f_n(x) - f(x)| + |g_n(x) - g(x)|. \tag{1}$$

Soit maintenant $\epsilon > 0$. On peut espérer montrer que le terme de gauche est petit que ϵ en montrant que les deux termes de droite sont chacun plus petits que $\epsilon/2$.

Comme $f_n \xrightarrow{u} f$, on fixe un rang $N_1 \in \mathbb{N}$ "à partir duquel le premier terme de droite est plus petit que $\epsilon/2$ ", c'est-à-dire tel que $\forall n \geq N_1$ et $\forall x \in I$, on a

$$|f_n(x) - f(x)| < \frac{\epsilon}{2}.$$

De même comme $g_n \xrightarrow{u} g$, on a $N_2 \in \mathbb{N}$ tel que $\forall n \geq N_2$ et $\forall x \in I$, on a

$$|f_n(x) - f(x)| < \frac{\epsilon}{2}.$$

Posons alors $N = \max(N_1, N_2)$ (il s'agit d'un rang à partir duquel les deux inégalités recherchées sont vérifiées).

Soit $n \geq N$, et soit $x \in I$, on a d'une part que $n \geq N_1$ donc $|f_n(x) - f(x)| < \frac{\epsilon}{2}$ et d'autre part que $n \geq N_2$ donc $|g_n(x) - g(x)| < \frac{\epsilon}{2}$. En combinant ceci avec l'équation (1), on trouve bien

$$|f_n(x) + g_n(x) - (f(x) + g(x))| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Ceci montre que $\forall n \geq N, \forall x \in I |f_n(x) + g_n(x) - (f(x) + g(x))| < \epsilon$. On a donc bien montré que pour chaque $\epsilon > 0$, on peut trouver un rang N tel que à partir de ce rang (c'est-à-dire pour tout $n \geq N$), on a que pour tout $x \in I$,

$$|(f_n(x) + g_n(x)) - (f(x) + g(x))| < \epsilon.$$

Ainsi, $f_n + g_n \xrightarrow{u} f + g$ comme voulu.

On va maintenant regarder ce qui se passe pour le produit. On l'a vu en cours, les choses peuvent mal se passer, et on rappellera un contre-exemple plus tard. Commençons par rappeler un énoncé fondamental pour la suite, que j'ai caché sous le tapis en cours.

Théorème 2. Soit a < b et $f : [a, b] \to \mathbb{R}$ continue. Alors f est bornée : il existe M > 0 tel que pour tout $x \in [a, b]$, on a

$$|f(x)| \leq M$$
.

On utilise également de manière cruciale le fait, vu en cours, que toute limite uniforme de fonctions continues est continue, c'est-à-dire :

Théorème 3. Soit $I \subseteq \mathbb{R}$ un intervalle et une suite de fonctions $f_n : I \to \mathbb{R}$ continues convergeant uniformément vers $f : I \to \mathbb{R}$. Alors f est également continue.

On peut maintenant prouver l'énoncé sur le comportement de la convergence uniforme par rapport au produit vu en cours : pour des fonctions continues sur un intervalle fermé, le produit de deux limites uniformes est la limite uniforme du produit.

Théorème 4. Soit a < b, soient (f_n) et (g_n) deux suites de fonctions sur [a,b] à valeurs réelles. On suppose que pour tout $n \in \mathbb{N}$, les fonctions f_n et g_n sont continues, et que l'on a $f_n \stackrel{u}{\to} f$ et $g_n \stackrel{u}{\to} g$. Alors $f_n g_n \stackrel{u}{\to} f g$.

Démonstration. Essayons comme précédemment de borner $f_n(x)g_n(x) - f(x)g(x)$, cette fois-ci en passant par un terme intermédiaire, un peu comme on l'a fait pour voir qu'une limite uniforme de fonctions continues est continue : on a

$$|f_n(x)g_n(x) - f(x)g(x)| \le |f_n(x)g_n(x) - f_n(x)g(x)| + |f_n(x)g(x) - f(x)g(x)|$$

$$= |f_n(x)| |g_n(x) - g(x)| + |f_n(x) - f(x)| |g(x)|.$$

Essayons d'analyser les différents termes : par hypothèse, pour n assez grand, on a que pour tout x les termes $|g_n(x) - g(x)|$ ainsi que $|f_n(x) - f(x)|$ sont très petits. Malheureusement, on les a multipliés par des termes additionels : $|f_n(x)|$ pour le premier, |g(x)| pour le second.

Commençons par essayer de borner le second produit $|f_n(x) - f(x)| |g(x)|$. On remarque tout d'abord que g est continue comme limite uniforme de fonctions continues (théorème 3). Le théorème 2 nous fournit alors M > 0 tel que pour tout $x \in [a, b], |g(x)| \le M$. On peut maintenant borner le second produit : comme $f_n \stackrel{u}{\to} f$ et $\frac{\epsilon}{2M} > 0$, on a $N_1 \in \mathbb{N}$ tel que pour tout $n \ge N_1$ et tout $x \in [a, b]$, on a $|f_n(x) - f(x)| < \frac{\epsilon}{2M}$, ce qui donne donc

$$|f_n(x) - f(x)| |g(x)| < \frac{\epsilon}{2M} \cdot M = \frac{\epsilon}{2}.$$
 (2)

Pour borner le premier produit, $|f_n(x)| |g_n(x) - g(x)|$ c'est plus compliqué car les deux termes dépendent de n. Si on veut s'en sortir comme pour le second produit, il faut montrer que le terme $|f_n(x)|$ est borné. Écrivons donc

$$|f_n(x)| \le |f_n(x) - f(x)| + |f(x)|.$$
 (3)

Comme f est continue d'après le théorème 3, on a M > 0 tel que pour tout $x \in [a, b]$ on aie $|f(x)| \leq M$. D'autre part, appliquant la définition de la convergence uniforme de f_n vers f, on trouve $N_2 \in \mathbb{N}$ tel que pour tout $n \geq N_2$ et tout $x \in [a, b]$, on a $|f_n(x) - f(x)| < 1$ (et donc $|f_n(x)| \leq M + 1$ d'après (3)).

On peut maintenant conclure comme pour le second terme : par convergence uniforme de (g_n) vers g, comme $\frac{\epsilon}{2(M+1)} > 0$, on a $N_3 \in \mathbb{N}$ tel que pour tout $n \geq N_3$,

$$|g_n(x) - g(x)| < \frac{\epsilon}{2(M+1)}.$$

Soit enfin $N = \max(N_1, N_2, N_3)$, alors pour tout $n \ge N$ et tout $x \in [a, b]$, on a à la fois $n \ge N_1$, $n \ge N_2$ et $n \ge N_3$ donc on peut reprendre l'inégalité du début et écrire :

$$|f_n(x)g_n(x) - f(x)g(x)| \le |f_n(x)g_n(x) - f_n(x)g(x)| + |f_n(x)g(x) - f(x)g(x)|$$

$$= |f_n(x)| |g_n(x) - g(x)| + |f_n(x) - f(x)| |g(x)|$$

$$< (M+1) \cdot \frac{\epsilon}{2(M+1)} + \frac{\epsilon}{2} = \epsilon,$$

ce qu'il fallait démontrer.

On rappelle enfin le non-exemple suivant, qui montre qu'il est important de travailler sur un intervalle fermé : si on prend $f_n(x) = g_n(x) = x + \frac{1}{n}$ alors $f_n \stackrel{u}{\to} f$ et $g_n \stackrel{u}{\to} g = f$ où f(x) = g(x) = x, mais la fonction $f_n g_n$ est donnée par $f_n g_n(x) = (x + \frac{1}{n})^2$, dont on a vu qu'elle ne tendait pas uniformément vers $fg: x \mapsto x^2$ sur \mathbb{R} . Mais d'après le théorème précédent $f_n g_n \stackrel{u}{\to} fg$ sur tout intervalle de la forme [a, b].