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Introduction
We study in this thesis two Polish groups S∞ and S(Z,N).

Definition 1. A Polish group is a topological group, i.e. a group (G, τ) such
that

(i) τ is an Hausdorff topology,
(ii) the map from G×G to G that sends (g, h) to gh is continuous,
(iii) the map from G to G that sends g to g−1 is continuous,
whose topology is Polish, i.e. its topology admits a complete compatible metric
and is separable which means that there exists a countably dense subset.

S∞ is the infinite symmetric group and S(Z,N) is the group of permutations
of Z commensurating N, i.e. the group of σ ∈ Sym(Z) such that

|N 4 σN| < +∞.

S∞ has been studied in various papers especially by George M. Bergman
in [Ber06]. Indeed in this paper, Bergman discovers that S∞ has the Bergman
property.

Definition 2. A group G has the Bergman property or is Bergman if whenever
W0 ⊆W1 ⊆ ... ⊆ G =

⋃
n
Wn, there are n and k such that G = W k

n .

Thanks to the work done by Christian Rosendal in [Ros09], we are able to
prove that a group G has the Bergman property implies that G has property
(OB) which is a geometric property. This result holds mainly due to Theorem
4.

Definition 3. A topological group G has property (OB) if whenever G acts by
continuous isometries on a metric space (X,d), then every orbit is bounded.

Theorem 4. The following are equivalent for a group G:
(i) Whenever G acts by isometries on a metric space (X,d), every orbit is

bounded;
(ii) Any left-invariant metric on G is bounded;
(iii) G has the Bergman property.

S∞ is bounded whereas S(Z,N) is not. Thus S(Z,N) cannot have the prop-
erty (OB). But we will show that S(Z,N) is locally bounded.

Definition 5. A topological group G is locally bounded if and only if it has a
coarsely bounded identity neighborhood.

Following Rosendal, our aim is to show that S(Z,N) admits a left-invariant
pseudometric which solely depends on its group topology, and which is well-
defined up to quasi-isometry. Such a pseudometric on S(Z,N) is called maximal.
This is a generalization for finitely generated groups with the word metric, with
respect to a finite generating set, as a maximal metric.

Definition 6. Let (X, dX) and (Y, dY ) be pseudometric spaces.
A map Φ : X 7→ Y is said to be a quasi-isometric embedding if there are positive
constants K, C such that

1

K
· dX(x1, x2)− C 6 dY (Φ(x1),Φ(x2)) 6 K · dX(x1, x2) + C.
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Also Φ is a quasi-isometry if, moreover there exists a positive constant C that
for any y ∈ Y , there exists x ∈ X such that

dY (Φ(x), y) 6 C.

S(Z,N) already admits a pseudometric which is defined by Yves De Cornulier
in [Cor16].

Definition 7. For g, h ∈ S(Z,N), dN(g, h) = |gN 4 hN| is a left-invariant
pseudometric on S(Z,N).

So we show that this pseudometric is maximal on S(Z,N) thanks to the
following proposition.

Proposition 8. For a continuous left-invariant pseudometric d on a topological
group G, the following are equivalent:

(i) d is maximal;
(ii) d is coarsely proper and (G,d) is large scale geodesic;
(iii) d is quasi-isometric to the word metric ρA given by a coarsely bounded

symmetric generating set A ⊆ G.

To show this, we need a characterization of the notion of being locally
bounded which is done by Rosendal in [Ros]. We will show that S(Z,N) is
locally bounded and even generated by a coarsely bounded set. The fact that
S(Z,N) is locally bounded is then a corollary of the following result:

Theorem 9. For a European topological group G, the following are equivalent:
(i) G admits a continuous left-invariant maximal pseudometric d;
(ii) G is generated by a coarsely bounded set;
(iii) G is locally bounded and not the union of a countable chain of proper open

subgroups;
(iv) the coarse structure is monogenic.

We finally show that for every k > 1, the group Zk embeds into S(Z,N)
isometrically for its natural word metric. This shows that S(Z,N) has infinite
asymptotic dimension, although we did not have the time to consider this notion
in details (see for instance the third section of [BD08]).

Let us finally present the plan of this thesis. In the first section we show
that S∞ has property (OB). We then present some basic results on the commen-
surating symmetric group S(Z,N) which will be needed later on. In the third
section, we prove Theorem 9. Finally in the fourth section, we prove that dN

is maximal and in the fifth section, we show that Zk is isometrically embedded
into S(Z,N).
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1 S∞ has property (OB)
S∞ is the symmetric group of N. It is a Polish group. In this section, we will
prove that any symmetric group of an infinite group has property (OB) using the
Bergman property. Indeed being Bergman is stronger than having the property
(OB). In particular, S∞ has property (OB). This section is mainly from [Ber06].

1.1 Definitions and structure of the proof
H stands for the symmetric group Ω which is an infinite set, i.e. H = Sym(Ω).
First we will clarify some basic definitions that will be needed throughout the
proof.

Definition 10. A subset ∆ ⊆ Ω is a moiety if |∆| = |Ω| = |Ω \∆|.

Notation 11. For subsets ∆ ⊆ Ω and U ⊆ H, U(∆) denotes the set of elements
of U that stabilizes ∆ pointwise.

Definition 12. For two sets A,B, we say that A and B are commensurated,
and we write A ∼ B if, |A 4 B| < ∞. Here 4 is the symmetric difference.
Notice that ∼ is an equivalence relation.

Definition 13. For Ω an infinite set, an element σ ∈ Sym(Ω) is replete if it
has |Ω| orbits of each positive cardinality smaller than ℵ0. For a subset ∆ ⊆ Ω
of cardinality |Ω|, σ is replete on ∆ if σ∆ = ∆ and the restriction of σ to ∆ is
a replete permutation of ∆.

Definition 14. A group G has the Bergman property or is Bergman if when-
ever W0 ⊆W1 ⊆ ... ⊆ G =

⋃
n
Wn, there are n and k such that G = W k

n .

Definition 15. A group G acts by continuous isometries on a metric space
(X,d) if for all x ∈ X the function from G to X, g 7→ gx is continuous.

Definition 16. A topological group G has property (OB) if whenever G acts
by continuous isometries on a metric space (X,d), then every orbit is bounded.

To complete the proof that S∞ has property (OB), we will show in section 1.2
that it has uncountable cofinality and is Cayley-bounded, and then we will show
and use the following connections between properties of a topological group G.

G is Cayley-bounded and has uncountable cofinality,
⇔ G has the Bergman property (Section 1.3),
⇔ whenever G acts by isometries on a metric space (X, d), every orbit is

bounded (Section 1.4),
⇒ G has property (OB) (Section 1.5).

1.2 S∞ is Cayley-bounded and has uncountable cofinality
We recall that H stands for the symmetric group of Ω, an infinite set. We are
going to show that any H is Cayley-bounded and has uncountable cofinality.
To show these two properties, we need two theorems from [Ber06]:
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Theorem 23. If U generates H then there exists n such that H ⊆ (U ∪U−1)n.
We say that H is Cayley-bounded.

Theorem 24. Let (Hn)n∈I be a chain of subgroups of H with |I| 6 |Ω| such
that

H =
⋃
n∈I

Hn.

Then there exists n such that H = Hn. We say that H has uncountable cofinal-
ity.

To be able to prove these theorems, a few lemmas are required.

Lemma 17. For every permutation σ of Ω, there exists two replete permuta-
tions σ1, σ2 such that σ = σ1σ2.

Proof. For σ a permutation, we choose ∆0 a moiety of Ω such that σ moves
finitely many elements from ∆0 to Ω \ ∆0 or from Ω \ ∆0 to ∆0. If Ω is
uncountable, there exists such a ∆0 because Ω contains |Ω| orbits, and thus can
be written as the disjoint union of two sets, each of which contains |Ω| orbits.
We can thus define ∆0 as one of theses two sets.
If Ω is countable:
∗ If σ has infinitely many orbits or if σ has more than one infinite orbit,

then we do the same as above.
∗ If σ has exactly one infinite orbit α〈σ〉 and finitely many finite orbits,

then we take ∆0 = {ασn : n > 0}. We can see that σ moves one element
out of ∆0 and none into it.

Now we split Ω \∆0 into two disjoint moieties ∆1 and ∆2 such that

(σ∆0 ∪ σ−1∆0) \∆0 ⊆ ∆1.

We claim that for any permutation τ0 of ∆0 and any permutation τ2 of ∆2,
there exists a permutation ρ of Ω such that: σρ|∆0 = τ0 and ρ|∆2 = τ2.
Indeed, suppose τ0 and τ2 as above. Thanks to the two conditions, the values of
ρ are specified on σ∆0 and on ∆2. ρ has not yet been defined on Ω\(σ∆0∪∆2).
Since ∆0 ∼ σ∆0, we have

∆0 ∪∆2 ∼ σ∆0 ∪∆2.

By taking the complement of the latter and since Ω = ∆0 t∆1 t∆2, we have

Ω \ (σ∆0 ∪∆2) ∼ ∆1.

Since |∆1| = |Ω|, we also have |Ω \ (σ∆0 ∪∆2)| = |Ω|.
Now we look at the set in the image of ρ which has not been defined. Indeed
the set of values for ρ that has not been specified is

Ω \ (τ0σ∆0 ∪ τ2∆2).

Since τ0 and τ2 are permutations, they are bijections then |τ0σ∆0| = |σ∆0| and
|τ2∆2| = |∆2|. Moreover σ∆0 is equal to ∆0. Hence

τ0σ∆0 ∪ τ2∆2 = σ∆0 ∪∆2 ∼ ∆0 ∪∆2.
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Since Ω \ (∆0 ∪∆2) = ∆1 which is infinite, the set

Ω \ (τ0σ∆0 ∪ τ2∆2)

is also infinite. Hence
Ω \ (τ0σ∆0 ∪ τ2∆2)

can be mapped bijectively into Ω \ (σ∆0 ∪∆2). We call this bijection ρ which
is then well-defined on Ω.

Now we take two replete permutations for τ0 and τ2, then ρ is replete on
∆2 and σρ is replete on ∆0 so they are both replete. Then σ = (σρ)ρ−1 is the
product of two replete permutations which is what we wanted to show.

Lemma 18. For σ ∈ H, there exists τ1, τ2 ∈ H such that

σ = τ−1
1 τ−1

2 τ1τ2.

Then any element of H is a commutator.

Proof. By Lemma 17, there exists σ1, σ2 two replete permutations such that
σ = σ1σ2.
Since any two permutations σ1, σ2 in H are conjugate if and only if for any
n = 1, ...,ℵ0, σ1 and σ2 have the same number of orbits of cardinal n, then σ1

is conjugate of σ2. Moreover for any σ ∈ H, σ is conjugate to its inverse. So σ1

is conjugate of σ−1
2 . Indeed there exists ρ ∈ H such that σ1 = ρσ−1

2 ρ−1.
Since, σ = σ1σ2, σ = ρσ−1

2 ρ−1σ2. In particular, we have τ1 = ρ−1 and
τ2 = σ2.

Definition 19. A subset ∆ ⊆ Ω is full with respect to a subset U ⊆ H if the
set of permutations of ∆ induced by members of U{∆} := {σ ∈ U : σ∆ = ∆} is
all of Sym(∆).

Lemma 20. Let ∆1 and ∆2 be moieties of Ω such that ∆1∩∆2 is also a moiety
and ∆1 ∪∆2 = Ω. Let U, V ⊆ H. If U and V closed under inverses such that
∆1 is full with respect to U and ∆2 is full with respect to V, then

H = (UV )4V ∪ (V U)4U.

Proof. First we notice that the set of elements of H that stabilize Ω\ (∆1∩∆2)
pointwise

H(Ω\(∆1∩∆2)) = {u ∈ H | u.s = s ∀s ∈ Ω \ (∆1 ∩∆2)}

is isomorphic to Sym(∆1 ∩∆2) thanks to the following isomorphism

H(Ω\(∆1∩∆2)) → H(∆1∩∆2)

g 7→ g|∆1∩∆2

which is injective. By Lemma 18, every element σ ∈ H can be written as a
commutator: σ = τ−1

1 τ−1
2 τ1τ2 with τ1, τ2 ∈ H.

We assumed that ∆1 is full with respect to U, so we can find an element
ρ ∈ U{∆1} such that ρ|∆1∩∆2

acts like τ1 and ρ|∆1\∆2
= id. Similarly, we can

find an element γ ∈ V{∆2} such that γ|∆1∩∆2
acts like τ2 and γ|∆2\∆1

= id.
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So the commutator ρ−1γ−1ργ acts like σ on ∆1 ∩ ∆2 and is the identity on
Ω \ (∆1 ∩∆2). Hence

ρ−1γ−1ργ ∈ H(Ω\(∆1∩∆2)).

So we have:
H(Ω\(∆1∩∆2)) ⊆ U−1V −1UV = UV UV,

since U and V are closed under inverses.
∆1 ∩∆2 is a moiety so |∆1 ∩∆2| = |Ω|. Moreover ∆1 is a moiety so

|∆1| = |Ω \ (∆2 \∆1)| = |∆2 \∆1| = |Ω|.

So ∆1 ∩∆2 and ∆2 \∆1 are of cardinality |Ω|. Hence we can find an element λ
of Sym(∆2) that interchanges the two sets. Since ∆2 is full with respect to V ,
λ is actually in V . We now have:

λ−1H(Ω\(∆1∩∆2))λ ⊆ λ−1UV UV λ ⊆ V −1UV UV V = V UV UV V. (1)

Since λ is interchanging ∆1 ∩∆2 with ∆2 \∆1,

λ−1H(Ω\(∆1∩∆2))λ = H(Ω\(∆1∩∆2)λ) = H(Ω\(∆2\∆1)) = H(∆1). (2)

Combining the two equations 1 and 2, we get

H(∆1) = λ−1H(Ω\(∆1∩∆2))λ ⊆ V UV UV V. (3)

Since we could exchange ∆1 and ∆2 in the previous reasoning, we then have a
similar result for H(∆2):

H(∆2) ⊆ UV UV UU.

Let σ ∈ H. We notice that σ−1(∆1 ∩∆2) has either |Ω| elements of ∆1 or
|Ω| elements of ∆2. Without loss of generality, we assume that σ−1(∆1 ∩∆2)
has |Ω| elements from ∆1. So in particular, σ−1∆1 has |Ω| elements of ∆1 since
it cannot have more than |Ω|. Since ∆1 is full with respect to U , we can find
a permutation δ ∈ U{∆1} such that all the elements of ∆1 \ σ−1∆1 are mapped
into ∆1 ∩ ∆2 and the |Ω| elements of ∆1 ∩ σ−1∆1 into ∆1 ∩ ∆2. Moreover δ
maps all the elements of Ω \∆1 onto itself. Then δ maps all elements of

σ−1(Ω \∆1) = σ−1∆2

into ∆2.

We want to find θ ∈ V{∆2} such that

θδσ−1(Ω \∆1) = Ω \∆1.

We construct the following permutation:
If x ∈ Ω \ σ−1∆1, either x ∈ ∆1, so x ∈ ∆1 \ σ−1∆1. Or since δ maps the
elements of ∆1 \ σ−1∆1 into ∆1 ∩ ∆2, we have that δx ∈ ∆1 ∩ ∆2. Either
x /∈ ∆1, since δ maps the elements of Ω \∆1 into Ω \∆1, we have that δx /∈ ∆1.
In particular, since Ω = ∆1 ∩∆2, δx ∈ ∆2. Now if

y ∈ (Ω \∆1)δσ−1 ⊆ ∆2,
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y = δσ−1x where x ∈ Ω \∆1 ⊆ ∆2, so we fix θy = x. Our θ is only a partial
bijection of ∆2 for now. We still need to show that dom(θ) and im(θ) have
infinite complements in ∆2 to be able to put them in bijection.
We have that

dom(θ) = δ(Ω \ σ−1∆1).

We denote by K the set of elements of ∆1∩∆2 that are mapped by δ in ∆1∩∆2.
Our aim is to show that δK is included in the complement of δ(Ω \ σ−1∆1) in
∆2 and then that δK has an infinite complement.
First we have that K ⊆ σ−1∆1 so K is disjoint from Ω \ σ−1∆1. Thus δK is
disjoint from δ(Ω \ σ−1∆1). Therefore δ(Ω \ σ−1∆1) is included in the com-
plement of δK in ∆2. Moreover δ(Ω \ σ−1∆1) is infinite so δK has an infinite
complement. Besides

δK ⊆ δ(Ω \ σ−1∆1),

hence dom(θ) has infinite complement in ∆2.
Now we have θy = x for x ∈ Ω \∆1 and y ∈ δσ−1(Ω \∆1), so im(θ) is included
in Ω\∆1. Moreover ∆1∩∆2 is infinite and disjoint from im(θ), thus ∆1∩∆2 is
included in the complement of im(θ) in ∆2. Therefore im(θ) has infinite com-
plement in ∆2.
On the remaining part of Ω, we define θ = id. So we have θ∆2 = ∆2, therefore
θ ∈ V{∆2}. This concludes the definition of θ.

Taking the complements of δσ−1(Ω \∆1) and Ω \∆1, we have that

θδσ−1∆1 = ∆1.

Since ∆1 is full with respect to U , we can find α ∈ U{∆1} such that

α|∆1 = (θδσ−1)−1 i.e. αθδσ−1 ∈ H(∆1).

Then σ(αθδ)−1 ∈ H(∆1). By equation (3), we have that

σ(αθδ)−1 ∈ V UV UV V.

Thus
σ ∈ UV U V UV UV V = (UV )4V.

Since we can exchange the roles of U and V , then there is also the following
alternative: σ ∈ (V U)4U . Hence

H = (UV )4V ∪ (V U)4U.

Lemma 21. If U ⊆ H is closed under inverses has a full moiety, then there
exists x ∈ H of order 2 such that

H = (Ux)7U2x ∪ (xU)7xU2.

Proof. Assume ∆1 is a full moiety with respect to U. We choose a moiety ∆2 ⊆ Ω
such that ∆1 ∩∆2 is a moiety and ∆1 ∪∆2 = Ω.
First we have

Ω \∆1 = (∆1 ∪∆2) \∆1 = ∆2 \∆1.
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Similarly we have Ω \∆2 = ∆1 \∆2. So Ω \∆1 ∩ Ω \∆2 is empty. Moreover
∆1 and ∆2 are moieties, so

|Ω \∆1| = |Ω \∆2| = |Ω|.

Thanks to the two last results, we can find an element of order 2 in H that
interchanges the two sets Ω \ ∆1 and Ω \ ∆2. It also interchanges their com-
plements ∆1 and ∆2. We call this element x. Since ∆1 is full with respect
to U , we have that the set of permutations of ∆1 induced by members of
U{∆1} = {σ ∈ U : σ∆1 = ∆1} is exactly Sym(∆1). Since ∆2 = x∆1, we
have

U{x−1∆2} = {σ ∈ U :−1 ∆2 = x−1∆2} = {σ ∈ U : xσx−1∆2 = ∆2}.

Then we get
xUx−1

{∆2} = {τ ∈ xUx−1 : τ∆2 = ∆2}.

So the set of permutations of ∆2 induced by members of U{∆2} is exactly
Sym(∆2). Thus ∆2 is a full moiety with respect to xUx−1 = xUx. We set
V = xUx. By Lemma 20, we have H = (UV )4V ∪ (V U)4U . Then we have the
two following expressions:

(UV )4V = (UxUx)4xUx = (Ux)8xUx = (Ux)7UxxUx = (Ux)7U2x,

(V U)4U = (xUxU)7U = (xU)8U = (xU)7xUU = (xU)7xU2.

Thus H = (Ux)7U2x ∪ (xU)7xU2.

Lemma 22. Let (Ui)i∈I be a family of subsets of H with |I| 6 |Ω| such that⋃
i∈I

Ui = H.

Then Ω contains a full moiety with respect to at least one of the Ui.

Proof. We show the lemma by contradiction.
Since Ω is infinite and |I| 6 |Ω|, we can write Ω as an union of disjoint moieties
∆i for i ∈ I. So we have

Ω =
⋃
i∈I

∆i

and ∆i ∩∆j = ∅ for i, j ∈ I.
If there are no full moiety with respect to any of the Ui, then in particular for
any i ∈ I ∆i is non-full with respect to Ui. By contradiction of the definition
of full, we can choose a permutation σi ∈ Sym(∆i) which is not the restriction
to ∆i of a member of (Ui)i∈I .
Let σ ∈ H be the permutation such that ∀i σ|∆i = σi. Then ∀i σ /∈ Ui. This
leads to a contradiction with

⋃
i∈I

Ui = H.

We can now prove Theorem 23 and Theorem 24, using the previous lemmas.

Theorem 23. If U generates H then there exists n such that H ⊆ (U ∪U−1)n.
In other words H is Cayley-bounded.
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Proof. Assume U generates H as a monoid. Without loss of generality, assume
1 ∈ U and 1 ∈ U−1. Indeed if not, we set V = U ∪ {1}. For i ∈ N∗, let
Ui = U i ∩ (U−1)i.
Since U generates H, H =

⋃
i

U i which implies that H =
⋃
i

(U−1)i.

Thus
H =

⋃
i

U i
⋂ ⋃

i

(U−1)i =
⋃
i

(U i ∩ (U−1)i) =
⋃
i

Ui.

Since Ω is infinite, by Lemma 22, Ω contains a full moiety with respect to some
Ui. Since Ui ⊆ H is closed under inverses has a full moiety, we can use Lemma
21:

there exists x ∈ H such that H = (Uix)7U2
i x ∪ (xUi)

7xU2
i .

We notice that (Uix)7U2
i x ∪ (xUi)

7xU2
i ⊆ (Ui ∪ {x})17 so H = (Ui ∪ {x})17.

We take a j > i such that x ∈ Uj . Since x ∈ Uj , we obtain

U17j = (U j)17 ⊇ U17
j = (Uj ∪ {x})17.

Moreover j > i, so Ui ∪ {x} ⊆ Uj ∪ {x}. Thus we obtain

H = (Ui ∪ {x})17 ⊆ U17j .

Now if U generates H as a group, only the inverses are missing so

H ⊆ (U ∪ U−1)17j .

Theorem 24. Let (Hn)n∈I be a chain of subgroups of H with |I| 6 |Ω| such
that

H =
⋃
n∈I

Hn.

Then there exists n such that H = Hn. In other words H has uncountable
cofinality.

Proof. By Lemma 22, Ω has a full moiety with respect to some Hn. The Hn

are subgroups so by Lemma 21, we have that

H = (Hnx)7H2
nx ∪ (xHn)7xH2

n for some x ∈ H.

Then H = 〈Hn ∪ {x}〉.
Since H = ∪n∈IHn and the Hn form a chain of subgroups of H, there exists
k > n such that x ∈ Hk. Thus

Hn ⊆ Hn ∪ {x} ⊆ Hk.

Since H = 〈Hn ∪ {x}〉 ⊆ Hk, then H = Hk.

We have now proven that H is Cayley-bounded and has uncountable cofi-
nality.
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1.3 Characterization of the Bergman property
In this part, we are going to show the following theorem that has been shown
by Manfred Droste and W. Charles Holland in [DH05]:

Theorem 25. G is Cayley-bounded and has uncountable cofinality if and only
if S has the Bergman property.

Proof. If U1 ⊆ U2 ⊆ ... ⊆ G subsets such that ∪iUi = G. Without loss of
generality, we suppose the Ui to be symmetric. Indeed if they are not symmetric,
the we set Vi = Ui ∪ U−1

i . Then the Vi are symmetric.
Let Gi = < Ui > be the subgroup generated by Ui for any i. Then

G1 ⊆ G2 ⊆ ... ⊆ S and
⋃
i

Gi = G.

Since G has uncountable cofinality, there exists n such that Gn = G. Therefore
Un is a set of generators for G. Since G is Cayley-bounded, there exists k such
that G ⊆ (Un ∪ U−1

n )k = Ukn . Hence G = Ukn .

Let (Gn)n∈I be a chain of subgroups of G with |I| 6 |Ω| such that
G = ∪n∈IGn. Since G is Bergman, there exists n and k such that G = Gkn so
in particular G = Gn.
Assume U generates G and without loss of generality, assume U is symmetric
and contains the identity. Take W1 ⊆W2 ⊆ ... ⊆ G by setting Wi = U i. Then⋃

i

Wi = G

since U generates G and is symmetric. Since G is Bergman, there exists n and
k such that G = W k

n = (Un)k = Unk.

An alternative to the proofs of the theorems would have been by using the
lemmas directly and show that if the assumptions of the lemmas are satisfied,
then the group S has the Bergman property. The proof would then be the
following:

Proof. Let G = ∪nGn with Un symmetric and Un ⊆ Un+1. By Lemma 22, Ω
contains a full moiety with respect to one of Un, say Uk. By Lemma 21, there
exists x ∈ G of order 2 such that

G = (Ukx)7U2
kx ∪ (xUk)7xU2

k .

Moreover G =
⋃
n
Gn, so there exists n > k such that x ∈ Un. Hence we have

G = (Ukx)7U2
kx ∪ (xUk)7xU2

k ⊆ (Un)14U3
n ∪ (Un)14U3

n ⊆ U17
n .

Therefore F = G ⊆ U17
n . Hence G = U17

n .
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1.4 End of the proof
In this part, we will show that a group G has the Bergman property if and
only if whenever G acts by isometries on a metric space (X, d), every orbit is
bounded.
This equivalence comes from the following theorem which is from [Ros09], The-
orem 2.2:

Theorem 26. The following are equivalent for a group G:
(i) Whenever G acts by isometries on a metric space (X,d), every orbit is

bounded;
(ii) Any left-invariant metric on G is bounded;
(iii) G has the Bergman property.

Proof. (i) =⇒ (ii) : We take G acting on (G, d) with d any left-invariant
metric. Since d is left-invariant, G acts by isometries of (G, d). So by (i), every
orbit is bounded. Then for any x ∈ G, there exists M such that for all g ∈ G,
d(x, gx) 6 M . So in particular, for all g ∈ G, d(e, g) 6 M . Therefore for
g1, g2 ∈ G,

d(g1, g2) 6 d(g1, e) + d(e, g2) 6 2M.

Hence d is bounded.
(ii) =⇒ (iii) : Assume we have W0 ⊆W1 ⊆ · · · ⊆Wn ⊆ · · · ⊆ G an exhaustive
sequence of subsets of G. Moreover we also have

W0 ∩W−1
0 ⊆W1 ∩W−1

1 ⊆ · · · ⊆Wn ∩W−1
n ⊆ · · · ⊆ G

which is an exhaustive sequence of subsets of G. So without loss of generality,
we can suppose the Wi to be symmetric. We also suppose that W0 = {1}.
We define the following left-invariant metric on G for some f, g:

d(f, g) = min(k1 + k2 + · · ·+ kn | ∃hi ∈Wki fh1 . . . hn = g).

Our aim is to prove that d is bounded if and only if G = W k
n for some n and k.

If d is bounded then there exists an M such that for any f, g ∈ G, d(f, g) 6M .
In particular, for any g ∈ G,

d(e, g) = min(k1 + k2 + · · ·+ kn | ∃hi ∈Wki h1 . . . hn = g) 6M.

It means that there exists k1, . . . , kj and h1, . . . , hj with j 6 n and hi ∈ Wki

such that
∑
i ki 6M which means that all the hi are in WdMe. This holds for

any g ∈ G, so
G = W j

dMe.

Now if G = W k
n for some n and k, for f, g ∈ G, since f−1g ∈ G = W k

n , there
exists hi ∈Wn such that f−1g = h1 . . . hk. All the hi are in Wn so

k∑
i=1

hi =

k∑
i=1

n = n · k.

Since for f, g ∈ G we have

d(f, g) = min(k1 + k2 + · · ·+ kn | ∃ hi ∈Wki fh1 . . . hn = g),

12



this minimum is smaller than or equal to n · k. Thus d is bounded.
(iii) =⇒ (i) : Assume G has the Bergman property and acts by isometries on
a metric space (X,d).
Fix an x0 ∈ X and let for n > 1,

Wn := {g ∈ G | d(x0, g · x0) > n}.

(Wn) is an increasing exhaustive sequence of subsets of G. Since G has the
Bergman property, G = W k

M for some M and k. Then there exists gi ∈ WM

such that g = g1 . . . gk ∈ G and

d(x0, g · x0) = d(x0, g1 . . . gk · x0)

6 d(x0, g1 · x0) + d(g1x0, g1g2 · x0) + . . .

+ d(g1...gk−1x0, g1 . . . gk−1 · x0)

6 d(x0, g1 · x0) + d(x0, g2 · x0) + · · ·+ d(x0, gk · x0)

6 kM.

Furthermore for x ∈ X,

d(x, g.x) 6 d(x, x0) + d(x0, g · x0) + d(g · x0, g · x)

6 d(x, x0) + kM + d(x, x0)

6 2d(x, x0) + kM.

So for any x ∈ X, the orbit of x is bounded.

1.5 Last part
If we have that whenever H acts by isometries on a metric space (X,d), every
orbit is bounded, then the latter is also true when H acts continuously by isome-
tries on a metric space (X,d) which is exactly what having property (OB) means.

In the end, the following result has been proved:
H is Cayley-bounded and has uncountable cofinality implies that H has prop-
erty (OB) for H = Sym(N) with N any infinite set.
Hence we have proved that the symmetric group of any infinite set has the prop-
erty (OB). Thus in particular, S∞ has property (OB) since S∞ = Sym(N).

13



2 Results on S(X,M) and So(X,M)

We now look at another Polish group which is S(X,M):

Definition 27. For a set X and a subset M of X, let S(X,M) be the group of
permutations of X commensurating M, i.e. the group of σ ∈ Sym(X) such that
|M 4 σM | < +∞.

In this section, we will get some results about S(X,M) that have been proven
in [Cor16] by Yves De Cornulier.

2.1 Definitions
Let X be a set and M a subset of X. First we define the following map that
will allow us to define So(X,M).

Definition 28. We define the transfer character map:

trM : S(X,M) → Z
g 7→ |g−1M \M | − |M \ g−1M |

=
∑
x∈X

1g−1M (x)− 1M (x)

A few more denotations:
∗ S0(X) is the group of finitely supported permutations of X;
∗ S+

0 (X) is its subgroup of index of alternating permutations;
∗ So(X,M) is the kernel of trM .

Definition 29. The length LM is defined by LM = |M 4 gM | for g ∈ S(X,M).

Definition 30. A group G is called perfect if it equals its own commutator
subgroup, i.e. if the group has no non-trivial abelian quotients. A group G is
called simple if it is a nontrivial group whose only normal subgroups are the
trivial group and G itself.

2.2 Results
Thanks to the transfer character map, we get more information and results on
S(X,M) and So(X,M).

Proposition 31. The function trM is a continuous homomorphism from S(X,M)
to Z and is bounded above by LM . It is surjective, unless M or M c is finite
(in which case it is zero). It does not depend on the choice of M within its
commensurability class and trMc = -trM . If X is infinite, its kernel So(X,M)
is a perfect group and is generated by S(M) ∪ S(M c) ∪ S+

0 (X).

Proof. For g ∈ S(X,M), we have

LM (g) = |M 4 gM |
= |gM \M |+ |M \ gM |
= |M \ g−1M |+ |g−1M \M |
> |g−1M \M | − |M \ g−1M |
> trM (g).
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Therefore trM is bounded above by LM .
LetM,N be such that |M 4 N | <∞. Suppose that there exists F finite subset
such that N = M t F . Let g ∈ S(X,M), then

trN (g)− trM (g) = trMtF (g)− trM (g)

=

(∑
x∈X

1g−1MtF (x)− 1MtF (x)

)
−

(∑
x∈X

1g−1M (x)− 1M (x)

)

=
∑
x∈X

1g−1MtF (x)− 1MtF (x)− 1g−1M (x) + 1M (x)

=
∑
x∈X

1g−1M (x) + 1g−1F (x)− 1M (x)− 1F (x)− 1g−1M (x) + 1M (x)

=
∑
x∈X

1g−1F (x)− 1F (x)

= trF (g)

= 0,

since F is finite.
Now let N ′ = M ∩N . Therefore

N ′ 4 M ⊆ (M 4 M) ∩ (N 4 M),

which is finite. Thus N ′ is commensurated to M . A similar result holds for N ,
so N ′ is also commensurated to N . Since N ′ ⊆M , there exists F1 finite subset
such that M = N ′ tF1. Indeed F1 = M \N ′ is finite since N ′ 4 M = M \N ′.
Similarly since N ′ ⊆ N , there exists F2 finite subset such that N = N ′ t F2.
Applying the previous result on M and M t F , we obtain

trM = trN ′ = trN .

Thus trM does not depend on the choice ofM within its commensurability class.
For g, h ∈ S(X,M), one has

trM (gh) =
∑
x∈X

1(gh)−1M (x)− 1M (x)

=
∑
x∈X

1h−1g−1M (x)− 1h−1M (x) +
∑
x∈X

1h−1M (x)− 1M (x)

=
∑
x∈X

1g−1M (hx)− 1M (hx) + trM (h)

= trM (g) + trM (h).

Thus trM is a homomorphism from S(X,M) to Z. Moreover

trM (g) = 0 =⇒ |g−1M \M | − |M \ g−1M | = 0.

This implies that g stabilizes M . Thus the stabilizer of M is contained in
ker(trM ). Furthermore the stabilizer of M is open by definition of the topology
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of S(X,M). Therefore trM is continuous.
Moreover for n ∈ Z, there exists g such

|g−1M \M | = n+ |M \ g−1M |,

then |M 4 gM | < +∞. Thus g ∈ S(X,M). Hence trM is surjective.
Let g ∈ Ker(trM ), it stabilizesM . Then the finite sets g−1M \M andM \g−1M
have the same cardinal. So there exists a permutation σ with finite support that
exchanges the two sets and is the identity on the complement of the two sets.
Let τ be either the identity when σ is even or a transposition with supportM or
M c when σ is odd. Thus τσ is an even permutation and τσg also stabilizes M .
If X is infinite, then M and M c are infinite. Then S(M),S(M c) and S+

0 (X)
are perfect groups. Thus ker(trM ) = So(X,M) is a perfect group. If either M
or M c is infinite, then ker(trM ) is equal to S(X) which is perfect.

Proposition 32. Some normal subgroups of S(Z,N) are the following:
∗ {1},S0(Z),S+

0 (Z);
∗ So(Z,N) and the subgroups which have finite index in S(Z,N).

Proof. S+
0 (Z) is generated by the 3-cycles and by the transpositions with disjoint

support. S0(Z) is generated by the transpositions. All the transpositions are
conjugated in S0(Z). So if N / S(Z,N) and N contains a transposition, then
N > S0(Z).

First S+
0 (Z) is dense in S0(Z). Moreover S+

0 (Z) is simple. Indeed let N be
such that N / S+

0 (Z), N 6= {1}. Let σ ∈ N \ {1}, then σ is not a transposition.
∗ if σ is a 3-cycle, then we have the result since S+

0 (Z) is generated by the
3-cycles;

∗ otherwise there exists i, j, k, l two by two different such that σ(i) = j and
σ(k) = l. We have

σ(ik)σ−1(ik) = σ(ik)σ−1(ik)−1 = (jl)(ik) ∈ N,

since (ik)σ−1(ik)−1 ∈ N is a commutator.
Let N E S(Z,N) be closed and N 6= {1}. Since N 6= {1}, N > S+

0 (Z). Let
σ ∈ N \ {1}. Then there exists i such that σ(i) 6= i.
∗ if σ is a transposition then N > S0(Z);
∗ otherwise either σ is a 3-cycle. In this case, N > S0(Z). Or there exists
i, j, k and l such that (jl)(ik) ∈ N. Therefore S0(Z) 6 N .

Second, S0(Z) is dense in So(Z,N). Indeed let σ ∈ S0(Z) and let U be a
neighborhood of σ. Then we can find P1, ..., Pn commensurated to N such that

U ⊇ {τ : τ(Pi) = σ(Pi)}.

Since the Pi are commensurated to N, there exists K ∈ N such that

for any i, Pi 4 N ⊆ J−K,KK and σ(Pi) 4 N ⊆ J−K,KK.

Thus σ(N) 4 N ⊆ J−K,KK and σ−1(N) 4 N ⊆ J−K,KK.
Thus S+

0 (Z) is also dense in So(Z,N).
By Proposition 31, we have that

So(Z,N) =
〈
S+

0 (Z),S(N),S(Z \ N)
〉
.
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The topology induced on S(N) is the usual topology. Indeed S(N) has an unique
topology of a separable group. (Following from Corollary 1.5 in [BYT16]) We
know that S0(N) is dense in S(N) for the usual topology.
Let Φ : S(Z,N) → S(Z). Φ is continuous if and only if it is continuous at
identity. Indeed if the latter is true, then for gn ∈ S(Z,N),

if gn → g then gng−1 → 1.

Therefore Φ(gng
−1) → 1 which implies that Φ(gn)Φ(g)−1 → 1 since Φ is a

morphism. Thus Φ(gn)→ Φ(g). Now to show that Φ is continuous at identity,
we need to show that if U is an open identity neighborhood in S(Z) then so is
Φ−1(U). Moreover any identity neighborhood is included in

U ′ = {σ : σ(n) = n} where n ∈ Z is fixed.

So it is enough to show that U ′ is an open identity neighborhood in S(Z). Let

V = {σ ∈ S(Z) | σ(N) = N, σ(N \ {n}) = N \ {n} and σ(N ∪ {n}) = N ∪ {n}}.

V is open in S(Z,N). Also V ⊆ U ′,
∗ if n ∈ N, then σ(N \ {n}) = N \ {σ(n)},
∗ if n < 0, then σ(N ∪ {n}) = {n} ∪ N.

Therefore
U ′ =

⋃
u∈U ′

uV,

thus U ′ is open. Hence the morphism Φ : S(Z,N)→ S(Z) is continuous. Thus
S0(N) 6 S0(Z) is dense in S(N). Similarly S0(Z\N) 6 S0(Z) is dense in S(Z\N).
Furthermore S+

0 (Z) is also dense in So(Z,N). Therefore So(Z,N) is dense in
S(Z,N).
So N > ker trN = So(Z,N). Either N = So(Z,N), or trN is a non-trivial
subgroup of Z of finite index. Then So(Z,N) and all its subgroups contain it.
Thus N has finite index in S(Z,N).

So we have shown that So(Z,N) is a normal subgroup of S(Z,N). Therefore
when we are going to show some results on S(Z,N), we will first show it on
So(Z,N) and then we will be able to show it on S(Z,N).
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3 A characterization of local boundedness
In this section, our aim is the following theorem from [Ros]. All of this section
is originally from the latter. This theorem will give us a characterization of the
notion of being locally bounded. This characterization holds for a larger claim
than Polish groups, namely European groups (cf. Definition 47).

Theorem 68. For a European topological group G, the following are equivalent:
(i) G admits a continuous left-invariant maximal pseudometric d;
(ii) G is generated by a coarsely bounded set;
(iii) G is locally bounded and not the union of a countable chain of proper open

subgroups;
(iv) the coarse structure is monogenic.

Since S(Z,N) is a European group, we will be able to apply this result in
the next section.

3.1 Definitions
To start, we will see a few definitions to be able to understand the notion of
coarse structure.

Definition 33. A coarse space is a set X equipped with a condition E of subsets
E ⊆ X ×X called entourages satisfying the following conditions:
• The diagonal ∇ = {(x, x);x ∈ X} belongs to E;
• if E ⊆ F ∈ E, then E ∈ E;
• if E,F ∈ E, then E ∪ F , E−1, E ◦ F ∈ E.
The condition E is also called a coarse structure on X.

Definition 34. A pseudometric space is a set X equipped with an pseudometric,
i.e. a map d : X × X −→ R+ such that d is symmetric, satisfies the triangle
inequality and d(x, x) = 0 for all x ∈ X.

Definition 35. For a topological group G, we define its left-coarse structure
EL by

EL =
⋂
{Ed | d is a continuous left-invariant pseudometric on G}.

Definition 36. A subset A ⊆ X of a coarse space (X,E) is said to be coarsely
bounded if A×A ∈ E.

3.2 First results
The metrisation theorem of Birkhoff and Kakutani stated and proved in the
book from Su Gao [Inv], has inspired the next lemma. The latter will be used
several times in the next results.

Lemma 37. Let G be a metrisable topological group and (Vn)n∈Z an increasing
chain of symmetric open identity neighborhoods satisfying G = ∪n∈ZVn and
V 3
n ⊆ Vn+1. Defining for f, g ∈ G,

δ(f, g) := inf(2n | f−1g ∈ Vn) and

d(f, g) := inf

(
k−1∑
i=0

δ(hi, hi+1) | h0 = f, hk = g

)
,
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we get that

1

2
δ(f, g) 6 d(f, g) 6 δ(f, g)

and d is a continuous and compatible left-invariant metric on G.

Proof. Since the Vi are symmetric, δ is symmetric. Moreover δ(f, g) > 0 for any
f, g. Also since for f 6= g, d(f, g) > 2. So δ(f, g) > 0. Thus δ(f, g) = 0 if and
only if f = g since f−1f = 1G ∈ V0.
Let f0, f1, f2, f3 ∈ G such that

δ(f0, f1), δ(f1, f2), δ(f2, f3) 6 ε.

Let p be such that

2p = max{δ(f0, f1), δ(f1, f2), δ(f2, f3)}.

Moreover
f−1

0 f3 = f−1
0 f1 · f−1

1 f2 · f−1
2 f3 ∈ V 3

p ⊆ Vp+1.

Thus
δ(f0, f3) = inf(2n | f−1

0 f3 ∈ Vn) 6 2p+1 = 2× 2p 6 2ε.

We check now that d is a compatible left-invariant metric on G.
Since δ(f, g) > 0, we have d(f, g) > 0 for any f, g ∈ G. Moreover

d(f, f) = inf

(
k−1∑
i=0

δ(hi, hi+1) | h0 = f, hk = f

)
= δ(f, f) = 0.

Also since δ is symmetric, d is also symmetric. Moreover for f, g, h ∈ G, let
hi for i ∈ {0, ..., k} be such that h0 = f and hk = g. Similarly let h′i for
i ∈ {0, ..., k′} be such that h′0 = f = h0 and h′k′ = h and h′′i for i ∈ {0, ..., k′′}
be such that h′′0 = h = h′k′ and h

′′
k′′ = g = hk. Since we add more elements to

the initial sum, we have

k−1∑
i=0

δ(hi, hi+1) 6
k′−1∑
i=0

δ(h′i, h
′
i+1) +

k′′−1∑
i=0

δ(h′′i , h
′′
i+1)

Therefore by taking the infimum of each sum, we have

d(f, g) 6 d(f, h) + d(h, g).

Hence d verifies the triangle inequality. For d to be a metric, f 6= g implies that
d(f, g) 6= 0 is left to show. First we claim that

1

2
δ(f, g) 6 d(f, g) for f 6= g. (4)

To obtain this, we show by induction on k ∈ N that

k+1∑
i=0

δ(hi, hi+1) >
1

2
δ(h0, hk+2). (5)
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For k 6 1, we mainly use the fact that

for ε > 0, if δ(f0, f1), δ(f1, f2), δ(f2, f3) 6 ε, then δ(f0, f3) 6 2ε. (6)

We have that

δ(h0, h1) 6
2∑
i=0

δ(hi, hi+1).

Moreover by fact (6),
δ(h0, h3)

2
6 δ(h0, h1).

Hence
δ(h0, h3)

2
6

2∑
i=0

δ(hi, hi+1).

For k > 2, we assume that inequality (5) holds for all l < k. Let

S =
k+1∑
i=0

δ(hi, hi+1).

∗ if δ(h0, h1) > 1
2S, then by induction hypothesis

S − δ(h0, h1) >
1

2
δ(h1, hk+2)⇔ 2S − 2δ(h0, h1)) > δ(h1, hk+2).

Since δ(h0, h1) > 1
2S, we have δ(h1, hk+2) 6 S. By fact (6),

δ(h0, hk+2) 6 S.

∗ if δ(hk, hk+1) > 1
2S, we use a symmetric argument.

∗ if δ(h0, h1), δ(hk, hk+1) < 1
2S, let m be the largest such that

m∑
i=0

δ(hi, hi+1) 6
1

2
S. (7)

Then 1 6 m < k + 1. By inductive hypothesis, we have that

δ(h0, hm+1) 6 2

m∑
i=0

δ(hi, hi+1) 6 S.

Since m is the largest such that inequality (7) holds,

m+1∑
i=0

δ(hi, hi+1) >
1

2
S.

Thus
k+1∑

i=m+2

δ(hi, hi+1) 6
1

2
S.
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Applying the inductive hypothesis, we have

δ(hm+2, hk+2) 6 2

k+1∑
i=m+2

δ(hi, hi+1) 6 S.

Moreover δ(hm+1, hm+2) 6 S. By fact (6), we have that δ(h0, hk+2) 6 2S.

Hence
1

2
δ(f, g) 6 d(f, g) for f 6= g.

Since for f 6= g, δ(f, g) > 0, then also d(f, g) > 0. This implies that d is a
metric.
We show now that δ is left-invariant: for f, g, h ∈ G, one has

δ(hf, hg) = inf(2n | (hf)−1(hg) ∈ Vn)

= inf(2n | f−1h−1hg ∈ Vn)

= inf(2n | f−1g ∈ Vn)

= δ(f, g).

Thus d is also left-invariant.
We show finally that d is compatible with the topology of G. Let U be open

in G and g ∈ U . Then for some n ∈ N, gVn ⊆ U . Let

f ∈ Bd
(
g, 2n−1

)
=
{
h ∈ G | d(g, h) < 2n−1

}
,

then d(f, g) < 2n−1. So by using claim (4),

δ(f, g) 6 2d(f, g) < 2n.

Thus g−1f ∈ Vn. Hence h ∈ gVn ⊆ U . Therefore

Bd
(
g, 2n−1

)
⊆ U.

Now let U be open in the topology given by d and g ∈ U . There exists n ∈ N
such that Bd(g, 2n) ⊆ U . Let f ∈ gBn+1, then δ(f, g) 6 2n−1. Moreover

d(f, g) 6 δ(f, g) 6 2n−1 < 2n,

by the definitions of δ and d. Thus f ∈ Bd(g, 2n). So f ∈ U . Therefore

gVn+1 ⊆ U.

Thanks to the last lemma, we have the following proposition:

Proposition 38. Let G be a topological group equipped with its left-coarse struc-
ture. Then the following conditions are equivalent for a subset A ⊆ G,

(i) A is coarsely bounded,
(ii) for every continuous left-invariant pseudometric d on G,

diamd(A) < +∞,
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(iii) for every continuous isometric action on a metric space, G � (X, d), and
every x ∈ X, diamd(A · x) < +∞,

(iv) for every increasing exhaustive sequence V1 ⊆ V2 ⊆ ... ⊆ G of open subsets
with V 2

n ⊆ Vn+1, we have A ⊆ Vn for some n.
Moreover, suppose G is countably generated over every identity neighborhood,
i.e for every identity neighborhood V there is a countable set C ⊆ G such that
G = 〈V ∪ C〉. Then (i)-(iv) are equivalent to:
(v) for every identity neighborhood V, there is a finite set F ⊆ G and k > 1

such that A ⊆ (FV )k.

Proof. (i) ⇐⇒ (ii) : By definition, A is coarsely bounded is equivalent to
A×A ∈ EL. Moreover:

A×A ∈ EL ⇔ for any continuous left-invariant pseudometric d on G,
A×A ∈ Ed,

⇔ for any continuous left-invariant pseudometric d on G,
sup(f,g)∈A×Ad(f, g) < +∞,

⇔ for any continuous left-invariant pseudometric d on G,
diamd(A) < +∞.

(ii) =⇒ (iii) : Let G � (X, d) be a continuous isometric action on a metric
space. Let x ∈ X. For f, g ∈ G, we define

∂(f, g) = d(f · x, g · x),

which is a continuous left-invariant pseudometric on G. If diam∂(A) < +∞,
then

diamd(A · x) < +∞.

The same applies for any x ∈ X.
(iii) =⇒ (ii) : Let d be a continuous left-invariant pseudometric on G and

X be the corresponding metric quotient of G. The isometry of the pseudomet-
ric space (G, d) factors through a metric space with the following equivalence
relation

x ∼ y if d(x, y) = 0.

Then the left-shift action of G onto itself factors through to a continuous transi-
tive isometric action on X. Thus if every A-orbit is bounded then A is d-bounded
on G.

(ii) =⇒ (iv) : We are showing the contraposition, i.e. (¬iv) =⇒ (¬ii) :
Suppose there exists an increasing exhaustive chain of symmetric open subsets

W1 ⊆W2 ⊆ ... ⊆ G,

such that W 2
n ⊆ Wn+1 and A * Wn for all n. Without loss of generality, we

suppose that 1 ∈W0. We take symmetric open identity neighborhoods Vk ⊆W0

for all k < 0 such that V 3
k ⊆ Vk+1 and for all k > 0, Vk = W2k+2. Then the chain

Vk for k ∈ Z satisfy the conditions of Lemma 37. Thus there exists a continuous
left-invariant pseudometric d on G such that its open n-ball is contained in V2n

since
d(f, g) 6 δ(f, g) = inf(2n | f−1g ∈ Vn).
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Therefore diamd(A) = +∞.
(iv) =⇒ (ii) : For d a continuous left-invariant pseudometric on G, we set

Vn = {f ∈ G | d(1, f) < 2n}.

For all n, V 2
n ⊆ Vn+1 since for f, g ∈ Vn,

d(1, fg) 6 d(1, f) + d(f, fg) = d(1, f) + d(1, g) < 2n + 2n = 2n+1.

Moreover Vn forms an increasing exhaustive sequence of open subsets of G. By
(iv), there exists k such that A ⊆ Vk. Furthermore notice that the d-bounded
sets are exactly those contained in some Vn. Thus

diamd(A) < +∞.

This is for any continuous left-invariant pseudometric on G, so we get (ii).
(v) =⇒ (iv) : Suppose

V1 ⊆ V2 ⊆ ... ⊆ G,

is an increasing exhaustive sequence of open subsets with V 2
n ⊆ Vn+1 for any n.

Then V1 is an identity neighborhood. Therefore there exists a finite set F ⊆ G
and k > 1 such that A ⊆ (FV1)k. Since F ⊆ G, there exists p such that F ⊆ Vp.
Hence

A ⊆ (FV1)k ⊆ (VpV1)k ⊆ Vp+k+1,

since V 2
n ⊆ Vn+1 for any n.

(iv) =⇒ (v) : Suppose G is countably generated over every identity neigh-
borhood. Let A be a coarsely bounded set and V an identity neighborhood.
Take a countable set C = {xn}n such that G = 〈V ∪ C〉. Let

Vn = (V ∪ {x1, ..., xn})2n.

Then V1 ⊆ V2 ⊆ ... ⊆ G is an increasing exhaustive sequence of open subsets
with V 2

n ⊆ Vn+1. Therefore there exists p such that

A ⊆ Vp = (V ∪ {x1, ..., xp})2p = (FV )2p,

where F is finite.

We now need a new definition, the ideal OB. This name has not been chosen
by hazard. We have seen in the first section the property (OB). The two notions
are connected. Indeed G has the property (OB) is equivalent to G ∈ OB.

Definition 39. The ideal OB of a group G is the ideal of closed coarsely bounded
sets in G.

The notion of left-invariant coarse structures on groups can be reformulated
as ideals of subsets, which will help us in the next results.

Proposition 40. Let G be a group. Then the map Φ sending E onto

AE = {A | A ⊆ AE for some E ∈ E}

23



with inverse map sending A onto

EA = {E | E ⊆ EA for some A ∈ A}

defines a bijection between the collection of left-invariant coarse structures E on
G and the collection of ideals A on G, containing {1} and closed under inversion
A 7→ A−1 and products (A,B) 7→ AB.

Proof. Let G be a group and E ⊆ G×G left-invariant. The corresponding set

AE = {x ∈ G | (1, x) ∈ E}

is covering all of E writing E = {(x, y) ∈ G × G | x−1y ∈ A}. This is similar
for the converse. Therefore the map that sends E to AE is a bijection between
left-invariant subsets of G×G and subsets of G with inverse

A 7→ EA = {(x, y) ∈ G×G | x−1y ∈ A}.

Moreover for A ⊆ G,

E−1
A = {(y, x) ∈ G×G | x−1y ∈ A}

= {(y, x) ∈ G×G | y−1x ∈ A−1}
= EA−1 .

Also for A,B ⊆ G,

EA ◦ EB = {(x, y) ∈ G×G | x−1y ∈ A} ◦ {(x, y) ∈ G×G | x−1y ∈ B}
= {(x, z) ∈ G×G | ∃y ∈ G (x, y) ∈ EA, (y, z) ∈ EB}
= {(x, z) ∈ G×G | ∃y ∈ G x−1y ∈ A and y−1z ∈ B}
= {(x, z) ∈ G×G | x−1z ∈ AB}
= EAB .

Another property is

EA[B] := {x ∈ G | ∃b ∈ B (x, b) ∈ EA} = BA−1.

The coarse structure generated by a collection of left-invariant sets has a cofi-
nal basis consisting of left-invariant sets. So E is left-invariant. Moreover the
collection of ideals A on G are closed under inversion and products.

Proposition 41. For every topological group G, we have

EL = EOB = {E | E ⊆ EA for some A ∈ OB}.

Proof. Suppose E ∈ EOB. Then there exists A ∈ OB such that E ⊆ EA. Let d
be a continuous left-invariant pseudometric on G. Since A is coarsely bounded,
by Proposition 38, diamd(A) < +∞. Then there exists a such that d(1, x) < a
for all x ∈ A. Hence

E ⊆ EA ⊆ {(x, y) | d(x, y) < a}, i.e. E ∈ Ed.

Since it holds for any d continuous left-invariant pseudometric on G, we have
E ∈ EL.
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Suppose E ∈ EL. Since EL is left-invariant,

E′ = {(zx, zy) | z ∈ G and (x, y) ∈ E}

is also in EL. Moreover E′ is also left-invariant so there exists A ⊆ G such
that E′ = EA and A has finite diameter with respect to every continuous left-
invariant pseudometric on G. Hence by Proposition 38, A is coarsely bounded.
Thus A ∈ OB. Therefore E ⊆ EA ∈ OB, i.e. E ∈ OB.

3.3 Intermediate theorems
In this part, our aim is to show the following intermediate theorem:

Theorem 55. For an European topological group G, the following are equiva-
lent:

(i) the left-coarse structure EL is monogenic;
(ii) G is generated by a coarsely bounded set, i.e. there is some A ∈ OB

algebraically generating G;
(iii) G is locally bounded and not the union of a countable chain of proper open

subgroups.

We need some new definitions:

Definition 42. A coarse space (X, E) is metrisable if it is of the form Ed for
some generalised metric d : X ×X −→ R+.

Definition 43. A topological group G is locally bounded if and only if it has
a coarsely bounded identity neighborhood.

Definition 44. A topological group G is a Baire if it satisfies the Baire category
theorem, i.e., if the intersection of a countable family of dense open sets is dense
in G.

Definition 45. A family {B}n ⊆ A is said to be cofinal in A if for every
A ⊆ A, there exists Bn such that A ⊆ Bn.

Definition 46. A subset B ⊆ X of a topological space X is nowhere dense if
its closure has empty interior, i.e. if for each open set U ⊆, the set B ∩ U is
not dense in U.

A subset B ⊆ X is somewhere dense if it is not nowhere dense.
A subset of a topological space X is said to be meager in X if it is a countable

union of nowhere dense subsets of X.
A subset is said to be non-meager if it is not meager.

Definition 47. A topological group G is European if it is Baire and countably
generated over every identity neighborhood.

The next lemmas are going to be directly used to prove Theorem 53. The
latter will help proving one of the equivalences of Theorem 55.

Lemma 48. Suppose G is a topological group countably generated over every
identity neighborhood. Then, for every symmetric open identity neighborhood
V, there is a continuous left-invariant pseudometric d so that a subset A ⊆ G
is d-bounded if and only if there are a finite set F and a natural k such that
A ⊆ (FV )k.
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Proof. Let V be a symmetric open identity neighborhood. Since G is countably
generated over V , there exists x1, x2, x3, ... ∈ G such that

G = 〈V ∪ {x1, x2, x3, ...}〉.

Now let
Vn = (V ∪ {x1, x

−1
1 , ..., xn, xn−1})3n

.

We have G = ∪nVn and the Vn is an increasing exhaustive chain of open sym-
metric identity neighborhood such that V 3

n ⊆ Vn+1 for any n. Then adding the
negative indexes of the chain Vn with symmetric open identity neighborhoods
Vi such that V 3

i ⊆ Vi+1 for any i, we get Vn ⊆ Vn+1 for n ∈ Z. By Lemma
37, we obtain a continuous left-invariant pseudometric d on G. Moreover each
d-ball is contained in some Vn and each Vn has finite d-diameter. Then a subset
A ⊆ G is d-bounded if and only if A ⊆ Vn for some n. Let F ⊆ G be a finite
subset. Then there exists n > 1 such that F ⊆ Vn. Thus

(FV )k ⊆ Vn+k

has finite d-diameter for all k > 1. This shows the equivalence.

Lemma 49. Let G be a locally bounded topological group and assume that G is
countably generated over every identity neighborhood. Then EL is induced by a
continuous left-invariant pseudometric d on G.

Proof. Let V be a symmetric open identity neighborhood coarsely bounded in
G. Let d be a continuous left-invariant pseudometric defined like in Lemma 48.
Then a subset A ⊆ G is d-bounded if and only if there are a finite set F and a
natural n such that A ⊆ (FV )n. Thus A is coarsely bounded in G. Therefore
d induces the left-coarse structure EL on G.

Lemma 50. For a topological group G, the following are equivalent:
(i) the left-coarse structure EL is metrisable;
(ii) the ideal OB is countably generated, i.e. the ideal OB has a countable

cofinal subfamily;
(iii) EL is metrised by a left-invariant metric d on G.

Proof. (i) =⇒ (ii) : Recall that

EOB = {E | E ⊆ EA for some A ∈ OB},

where
EA = {(x, y) ∈ G×G | (1, x) ∈ E}.

Since by Lemma 41 EOB = EL, then the ideal OB is countably generated.
(ii) =⇒ (iii) : Suppose OB is generated countably by a cofinal family

{An}n ⊆ OB. Let A′n = {1} ∪AnA−1
n and define the sequence {Bn}n by

B0 = {1}
Bn+1 = A′n+1 ∪BnBn.

Then {Bn}n is an increasing cofinal sequence in OB. Each Bn is symmetric and
B2
n ⊆ Bn+1. Now define a metric d such that for x, y ∈ G,

d(x, y) = min(k | x−1y ∈ Bk).
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Let A be a d-bounded set. Then for any x, y ∈ A, there exists C ∈ R∗+ such
that d(x, y) 6 C. Then A × A ∈ Ed. There exists K > C such that for any
x, y ∈ A such that x−1y ∈ BK . Hence A× A ∈ EOB = EL by Lemma 41. Thus
A is coarsely bounded. Therefore EL is metrised by d on G.

(iii) =⇒ (i) : This follows by definition.

Lemma 51. Let G be a Baire topological group with metrisable left-coarse struc-
ture EL. Then G is locally bounded.

Proof. EL is metrisable, then by Lemma 50, the idealOB is countably generated.
So there is a countable cofinal family {An}n. Thus {An}n is cofinal in OB.
Moreover OB contains all the singletons, so

G =
⋃
n

An.

Also G is Baire, so G is non-empty and open. Thus G is non-meager. Since
G = ∪nAn, there exists at least one of the An, say Ak which is not meager.
Therefore Ak has non-empty interior W . Moreover V = WW−1 is an identity
neighborhood. Furthermore since W ∈ OB, WW−1 ∈ OB. Thus V ∈ OB.
Hence V is coarsely bounded implying that G is locally bounded.

Lemma 52. Let G be a topological group and suppose that EL is induced by a
continuous left-invariant pseudometric d on G. Then G is locally bounded.

Proof. Since the left-invariant pseudometric d is continuous, d is bounded on an
identity neighborhood V . Moreover V × V ∈ Ed = EL, thus V × V ∈ EL. Hence
V is coarsely bounded and so G is locally bounded.

Theorem 53. For a European topological group G, the following are equivalent:
(i) the left-coarse structure EL is metrisable;
(ii) G is locally bounded;
(iii) EL is induced by a continuous left-invariant pseudometric d on G.

Proof. (i) =⇒ (ii): follows from Lemma 51.
(ii) =⇒ (iii): follows from Lemma 49.
(iii) =⇒ (i): Let d be a continuous left-invariant pseudometric on G which

induces EL. By Lemma 37, there exists ∂ that is a compatible and continuous
left-invariant metric on G. Thus the left-coarse structure EL is metrisable.

Definition 54. A coarse structure (X, E) is monogenic if E is generated by a
single entourage E.

Theorem 55. For a European topological group G, the following are equivalent:
(i) the left-coarse structure EL is monogenic;
(ii) G is generated by a coarsely bounded set, i.e. there is some A ∈ OB

algebraically generating G;
(iii) G is locally bounded and not the union of a countable chain of proper open

subgroups.

Proof. (i) =⇒ (iii) : EL is monogenic, so it is countably generated. Hence EL
is metrisable. By Theorem 53, G is locally bounded. Now suppose G = ∪nGn
where for all n, Gn ⊆ G which are open subgroups. By Proposition 38, each
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coarsely bounded set is included in one the Gn. So there exists n such that
A ⊆ Gn and since G is generated by A,

G = 〈A〉 ⊆ Gn.

Hence A = Gn.
(iii) =⇒ (ii) : Suppose G is locally bounded. Let V be an identity

neighborhood coarsely bounded and {xn}n countable set which generates G on
V ,

i.e. G = V ∪ {x1, ..., xn, ...}.

Moreover G is not the union of a countable chain of proper open subgroups,
thus G is generated by V ∪ {x1, ...xn}. Let for n ∈ N,

Gn = 〈V ∪ {x1, ...xn}〉.

Each Gn is an open subgroup of G and the Gn’s form an increasing exhaustive
chain. Furthermore for any g ∈ G, there exists an n such that g ∈ Gn. Now
G = ∪nGn is possible only if there exists n such that

G = Gn = 〈V ∪ {x1, ...xn}〉.

The latter is coarsely bounded. Hence G is generated by a coarsely bounded
set.

(ii) =⇒ (i) : Suppose there exists A ∈ OB algebraically generating G, then
A ⊆ G,

i.e. G =
⋃
n

An.

By the Baire theorem, some An must be somewhere dense and thus B = An

is coarsely bounded with non-empty interior and it is generating G. If C ⊆ G
coarsely bounded, by Proposition 38, since int(B) 6= ∅, i.e B is an identity
neighborhood, there exists F finite set such that F ⊆ G and k > 1 such that
C ⊆ (FB)k. Since B generates G, C ⊆ Bm for some m > k. Therefore {Bn}n
is cofinal in OB.
Hence EOB is monogenic. Indeed by replacing the generator E ∈ E in the
definition of monogenic, by E ∪∆, we have that E is monogenic if and only if
there is some entourage E ∈ E such that {En}n is cofinal in E . Moreover EOB
is a left-coarse structure, so the latter E is of the form EA with A a coarsely
bounded set. Since EnA = EAn , we have the following equivalence: there exists
a coarsely bounded set B such that {Bn}n is cofinal in OB if and only if EOB
is monogenic. Then by Lemma 41, EL is monogenic.

3.4 Final theorem
In this section, our aimed theorem will be proved thanks mainly to Theorem
55.

First we need a few geometric notions on coarse spaces and pseudometric
spaces:

Definition 56. Let (X, E) and (Y,F) be coarse spaces and Φ : X → Y . Φ is
called bornologous if (Φ× Φ)[E ] ⊆ F .
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Definition 57. A continuous left-invariant pseudometric d on a topological
group G is coarsely proper if d induces the left-coarse structure on G, i.e.
EL = Ed.

Definition 58. Let (X, dX) and (Y, dY ) be pseudometric spaces.
A map Φ : X → Y is said to be a quasi-isometric embedding if there are positive
constants K, C such that

1

K
· dX(x1, x2)− C 6 dY (Φx1,Φx2) 6 K · dX(x1, x2) + C.

Also Φ is a quasi-isometry if, moreover there exists a positive C that for any
y ∈ Y , there exists x ∈ X such that

dY (Φ(x), y) 6 C.

A map Φ : X → Y is Lipschitz for large distances if there are positive constants
K, C such that

dY (Φx1,Φx2) 6 K · dX(x1, x2) + C.

Definition 59. A quasimetric space is a set X equipped with a quasi-isometric
equivalence class D of pseudometrics d on X which is defined by the quasi-
isometry between two spaces. Moreover two pseudometrics d and ∂ on a set X
are quasi-isometric if the identity map id : (X, d)→ (X, ∂) is a quasi-isometry.

Definition 60. A pseudometric space (X,d) is large scale geodesic if there is
K > 1 such that, for all x, y ∈ X, there are z0 = x, z1, z2, ..., zn = y such that
d(zi, zi+1) 6 K and

n−1∑
i=0

d(zi, zi+1) 6 K · d(x, y).

Definition 61. A continuous left-invariant pseudometric d on a topological
group G is maximal if for every other continuous left-invariant pseudometric ∂,
there are constants K,C such that ∂ 6 K · d+ C.

Definition 62. Let G be a topological group admitting a maximal pseudometric.
The quasimetric structure on G is the quasi-isometric equivalence class of its
maximal pseudometrics.

Definition 63. If Σ is a symmetric generating set for a topological group G,
then its associated word metric ρΣ : G −→ N is defined by

ρΣ(g, h) = min(k > 0 | ∃ s1, ..., sk ∈ Σ g = hs1...sk).

The next lemma has been adapted from Theorem 1.4.13 (p.48) of the fol-
lowing paper [Han14] written by Bernhard Hanke, Piotr Nowak and Guoliang
Yu.

Lemma 64. Let Φ : X −→ Y be a bornologous map between quasi-metric
spaces (X, dX) and (Y, dY ) and assume (X, dX) is large scale geodesic. Then Φ
is Lipschitz for large distances.
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Proof. Since (X, dX) is large scale geodesic, there exists K > 1 such that for
any x, y ∈ X, there exists z0 = x, z1, ..., zn = y such that

dX(xi, xi+n) 6 K and
n−1∑
i=0

dX(xi, xi+1) 6 K · dX(x, y).

First by triangle inequality, we have for x, y ∈ X that

dY (Φ(x),Φ(y)) 6
n−1∑
i=0

dY (Φ(xi),Φ(xi+1)).

Moreover since Φ is bornologous, for E ∈ EdX ,

E = {(x1, x2) ∈ X2 | dX(x1, x2) 6 K}

and then Φ(E) ∈ EdY . Thus there exists K > 1 such that

Φ(E) ⊆ {(y1, y2) ∈ Y 2 | dY (y1, y2) 6 K ′}.

Therefore

dY (Φ(x),Φ(y)) 6 K ′
n−1∑
i=0

dX(xi, xi+1) 6 K ′K · dX(x, y).

Lemma 65. For a continuous left-invariant pseudometric d on a topological
group G, the following are equivalent:

(i) d is coarsely proper;
(ii) a set A ⊆ G is coarsely bounded if and only if it is d-bounded;
(iii) for every left-invariant pseudometric ∂ on G, the map

id : (G, d) −→ (G, ∂)

is bornologous.

Proof. (i) =⇒ (iii) : Since d is coarsely proper,

Ed = EL =
⋂
{E∂ | ∂ continuous left-invariant pseudometric on G}

So for any ∂ continuous left-invariant on G, Ed ⊆ E∂ . Thus

(id× id)[Ed] ⊆ E∂ .

Hence
id : (G, d) −→ (G, ∂)

is bornologous.
(ii) =⇒ (iii) : Let ∂ be a continuous left-invariant pseudometric. To show

that id : (G, d) −→ (G, ∂) is bornologous. Let A ⊆ G d-bounded, then by (ii)
A is coarsely bounded, so A is ∂-bounded. By Lemma 40, the coarse structure
induced by d is included in the one induced by ∂. Then Ed ⊆ E∂ . Hence the
identity map from (G, d) to (G, ∂) is bornologous.
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(iii) =⇒ (ii) : Suppose that for any continuous left-invariant pseudometric
∂, the identity map from (G, d) to (G, ∂) is bornologous Then in particular, for
A ⊆ G d-bounded and for a continuous left-invariant pseudometric ∂,

A d-bounded⇔ A×A ∈ Ed ⇒ A×A ∈ E∂ ⇒ A ∂-bounded.

Thus we have shown that if A is d-bounded then A×A ∈ E∂ for any continuous
left-invariant pseudometric ∂ which is equivalent to A×A ∈ EL i.e. A is coarsely
bounded.

(i) ⇐⇒ (ii) : if a d-ball of radius R is contained in a ∂-ball of radius S,
then

d(x, y) = d(1, x−1y) < R⇒ ∂(x, y) = ∂(1, x−1y) < S

By Lemma 40, d is coarsely proper is equivalent to a set A ⊆ G is coarsely
bounded when it is d-bounded.

Lemma 66. Suppose d is a compatible left-invariant metric on a topological
group G and V is a symmetric open identity neighborhood generating G con-
taining 1 and having finite d-diameter. Define

∂(f, h) = inf

(
n∑
i=1

d(gi, 1) | gi ∈ V, f = hg1...gn

)
.

Then ∂ is a compatible left-invariant metric, quasi-isometric to the word metric
ρV .

Proof. Firstly ∂ is left-invariant, moreover V is open and d is continuous, thus
∂ is also continuous. Since ∂ > d, ∂ is a compatible metric on G.
Then we show the last part: ∂ is quasi-isometric to the word metric ρV .
For f, h ∈ G, let n = ρV (f, h), f = hg1...gn with gi ∈ V . Since gi ∈ V and
1 ∈ V , d(gi, 1) 6 diamd(V ). So,

n∑
i=1

d(gi, 1) 6 n · diamd(V ),

i.e. ∂(f, h) 6
n∑
i=1

d(gi, 1) 6 ρV (f, h) · diamd(V ).

Now pick ε > 0 such that

{g ∈ G | d(g, 1) < 2ε} ⊆ V.

We fix f, h ∈ G and take the shortest sequence such that for gi ∈ V with
i ∈ J0, nK,

f = hg1...gn and
n∑
i=1

d(gi, 1) 6 ∂(f, h) + 1.

Then we have gigi+1 /∈ V . Otherwise a sequence with gigi+1 instead of gi and
gi+1 would be a shorter sequence since d(gigi+1, 1) 6 d(gi, 1) + d(gi+1, 1).
Let d(gi, 1) > ε and d(gi+1, 1) > ε. Then there are at least n−1

2 gi such that
d(gi, 1) > ε. Therefore

n− 1

2
· ε 6

n∑
i=1

d(gi, 1) 6 ∂(f, h) + 1.
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Since ρV (f, h) 6 n,

ρV (f, h)− 1

2
· ε 6

n∑
i=1

d(gi, 1) and so

ερV (f, h)

2
− ε

2
− 1 6 ∂(f, h) 6 diamd(V ) · ρV (f, h).

Hence ∂ and ρV are quasi-isometric.

Proposition 67. For a continuous left-invariant pseudometric d on a topolog-
ical group G, the following are equivalent:

(i) d is maximal;
(ii) d is coarsely proper and (G,d) is large scale geodesic;
(iii) d is quasi-isometric to the word metric ρA given by a coarsely bounded

symmetric generating set A ⊆ G.

Proof. (ii) =⇒ (i) : Suppose ∂ 6= d is a continuous left-invariant pseudometric
on G. By Lemma 65, id : (G, d) −→ (G, ∂) is bornologous. Then by Lemma
64, id is Lipschitz for large distances. Thus d is maximal.

(i) =⇒ (iii) : Claim: G is generated by a closed ball

Bk = {g ∈ G | d(g, 1) 6 k}.

Suppose it is false, then G is the union of an increasing chain of proper open
sub-groups Vn = 〈Bn〉 for n > 1. We now add the negative indexes to the chain
Vn = 〈Bn〉 for n > 1 with

V0 ⊇ V−1 ⊇ V−1 ⊇ ... 3 1,

where the V−1 are symmetric and open such that V 3
n ⊆ Vn+1. From Lemma 37,

we get

∂(f, g) = inf

(
k−1∑
i=0

δ(hi, hi+1) | h0 = f, hk = g

)
.

Since d is maximal, there exists K,C > 0 such that

∂(f, g) 6 Kd(f, g) + C for all f, g.

Since Bn \ Vn−1 6= ∅ for infinitely many n > 1, for g ∈ Bn \ Vn−1 ⊆ Vn \ Vn−1,
there exists an infinity of n such that ∂(g, 1) > 2n−1 and d(g, 1) 6 n. Then

2n−1 6 ∂(g, 1) 6 Kn+ C,

for infinitely many n. This cannot be. Therefore

G = Vk = 〈Bk〉 for a k > 1.

Let

∂′(f, g) = inf

(
n∑
i=1

d(gi, 1) | gi ∈ Bk, f = hg1...gn

)
from Lemma 66 where V = Bk. Thus d 6 ∂′. Moreover since d is maximal,
there exists K,C > 0 such that ∂′ > Kd + C. Therefore d and ∂′ are quasi-
isometric. By Lemma 66, ∂′ is quasi-isometric to the word metric ρBk

. Thus d
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and ρBk
are quasi-isometric.

We need to check that Bk is coarsely bounded. Let d′ a continuous left-invariant
pseudometric, then there exists K,C > 0 such that d′ 6 Kd+ C. If x, y ∈ Bk,
then d(x, y) 6 2k. So

d′(x, y) > 2kK + C

and in particular, Bk is d-bounded. Therefore Bk is coarsely bounded.
(iii) =⇒ (ii) : ρA is the shortest path on the Cayley graph of G with respect

to the symmetric generating A ⊆ G. Indeed the Cayley graph has vertexes G
and for g, h ∈ G, g is related to h by an edge if and only if there exists a ∈ A
such that g = ha.
For x, y ∈ G, let

dc(x, y) = min{n ∈ N | ∃x0 = x, x1, ..., xn−1, xn = y where (xi, xi+1) is an edge}.

Then since (xi, xi+1) is an edge, dc(xi, xi+1) 6 1. Thus

n−1∑
i=0

dc(xi, xi+1) 6 dc(x, y).

Therefore (G, ρA) is large scale geodesic. Moreover d is quasi-isometric to ρA,
so (G, d) is large scale geodesic.
Moreover each d-bounded set is ρA-bounded. Therefore these sets are in An for
an n. Then they are coarsely bounded. Hence d is coarsely proper.

Using the previous results, we are now able to prove our main theorem.

Theorem 68. For a European topological group G, the following are equivalent:
(i) G admits a continuous left-invariant maximal pseudometric d;
(ii) G is generated by a coarsely bounded set;
(iii) G is locally bounded and not the union of a countable chain of proper open

subgroups;
(iv) the coarse structure is monogenic.

Proof. Thanks to Theorem 55, we already have (ii) ⇐⇒ (iii) ⇐⇒ (iv).
(ii) =⇒ (i) : Let d be a continuous left-invariant pseudometric admitted by

G. G is generated by a coarsely bounded set, so it is generated by a d-bounded
subset. Then this subset has finite d-dimension. So there exists k ∈ R such that
G is generated by the open d-ball:

V = {x ∈ G | d(1, x) < k}.

Taking the ∂ of Lemma 66, we have ∂ is quasi-isometric to the word metric
ρV . Thus by Lemma 66, V is coarsely bounded generating G. Therefore by
Proposition 67, ∂ is maximal.

(i) =⇒ (ii) : Let d be a maximal pseudometric on G. By Proposition 67, d
is quasi-isometric to the word metric ρA with A coarsely bounded set generating
G.
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4 S(Z,N) is locally bounded
In this section, we will show that S(Z,N) is locally bounded. Thanks to Theorem
68, we have a characterization of such a result. Thanks to this theorem, we need
to show that S(Z,N) admits a continuous left-invariant maximal pseudometric
d. The perfect candidate for d is the pseudometric defined in [Cor16] at the top
of page 24. For a set X and M a subset of X, we have the following general
definition.

Definition 69. For g, h ∈ S(X,M), dM (g, h) = |gM 4 hM | is a left-invariant
pseudometric on S(X,M).

We are only interested in S(Z,N). So let us show that

Theorem 70. dN(g, h) = |gN 4 hN| is maximal on S(Z,N).

Thanks to Proposition 67, we need to show that dN is coarsely proper and
(S(Z,N), dN) is large scale geodesic.

4.1 Proof on So(Z,N)

First we are going to show it on So(Z,N) because it is an easier case. We will
then use it to prove the result on S(Z,N).

To show that (So(Z,N), dN) is large scale geodesic, it is enough to show that
for k and e the neutral element,

Bd(e, k) ⊆ Bd(e, 2)2k.

Since S+
0 (Z) the set of finite support permutations is dense in So(Z,N) and

Bd(e, 0) is open, it is enough to show

Bd(e, k) ∩ S+
0 (Z) ⊆ Bd(e, 2)2k.

Let σ ∈ S+
0 (Z) and k ∈ R+ such that dN(σ, e) = k. Then |σN 4 N| = k. Since

σ has finite support, there exists σ1, . . . , σp cyclic permutations with disjoint
supports such that σ = σ1 · · ·σp. For j ∈ {1, . . . , p},
∗ if σj has its support included in Nc or N then dN(σj , e) = 0,
∗ otherwise σj = (a1 · · · an) where ai ∈ Z. Let

F = {b1, . . . , bk ∈ N such that σ(bi) 6 0} ∪ {c1, . . . , ck ∈ Nc such that σ(ci) > 0}
= {f1, . . . , f2k}.

Then there is only a finite number of those fi in the σj , say l 6 2k. Then

σj = ( — f1 — f2 — f3 — · · · — fl — )

= ( — f1)(f1 — f2)(f2 — f3) · · · (fl — )

where each — means that there are some ai 6= fm for anym ∈ {1, . . . , 2k}.
So first we have that

dN(( — f1), e) = dN((fl — , e) = 0.
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Let us compute it for the cycle ( — f1). In the latter, we know that all
the ai 6= f1 are all of the same sign. Also σ sends the element before f1

onto f1 so f1 is of the same sign too. Thus all the elements of ( — f1)
are of the same sign. Therefore dN(( — f1), e) = 0. Second we have the
following

dN((fi — fi+1), e) = 2,

since two elements are sent from N to Nc or the other direction.
Since σ is the product of σj , we have:

Bd(e, k) ⊆ Bd(e, 2)2k. (8)

By Lemma 65, dN is coarsely proper if and only if every dN-bounded set
A is coarsely bounded. Now thanks to Proposition 38, it is equivalent to for
every identity neighborhood V, there is a finite set F ⊆ G and k > 1 such that
A ⊆ (FV )k. Equation 8 is used to reduce to the case A = Bd(e, 2) which is a
subset of G. Let

V = {σ ∈ So(Z,N) : σ(Pi) = Pi where i ∈ {1, ..., k}, Pi | |Pi 4 N| <∞}.

There exists K such that |Pi 4 N| ⊆ {−K, ...,K}. Hence

V ⊇
∼
V = {σ ∈ V : σ(i) = i ∀i ∈ {−K, ...,K}}.

Moreover ∼
V ∼= Sym (K−∞,−K − 1K)× Sym (JK + 1,+∞J)

since the values outside of these two intervals do not matter as long as they stay
either in N or Nc.
Furthermore Sym (K−∞,−K − 1K), respectively Sym (JK + 1,+∞J) is an open
subgroup of Sym(Nc), respectively of Sym(N).
We start with an easier case: let σ ∈ Bd(e, 0) and A = σ([0,K[). Then there
exists τ ∈ V such that τ(A ⊆ [0, 2K[). Thus

B = τσ ([0,K[) ⊆ [0, 2K[.

Now we construct τ ′ ∈ Sym([0, 2K[) such that τ ′(B) = [0,K[.
Since for x ∈ [0,K[, τσ(x) ∈ [0, 2K[, we define τ ′ by τ ′(τσ(x)) = x for all
x ∈ [0, 2K[. Then we extend τ ′ arbitrarily such that τ ′ ∈ Sym([0, 2K[). We have
τ ′τσ ∈ Sym([0, 2K[) where τ ′ ∈ Sym([0, 2K[), τ ∈ V . So τσ ∈ Sym([0, 2K[) V .
Thus σ ∈ V Sym([0, 2K[) V . Hence

Bd(e, 0) ⊆ V Sym([0, 2K[) V.

Since Sym([0, 2K[) is a finite subset, we found F such that

Bd(e, 0) ⊆ V FV.

Then we show the case which is the one we need. Let σ ∈ Bd(e, 2). Let a < 0
such that σ(a) > 0 and b > 0 such that σ(b) < 0. Moreover let A = σ(]−K,K[).

Then there exists τ ∈
∼
V such that τ(A) ⊆ ]− 2K, 2K[. Our aim is to have for

K > 0 such that

τ ∈
∼
V , τ({a, b, σ(a), σ(b)}) ⊆ ]− 2K, 2K[.
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We set σ′ = τστ−1. Then τ(a) 7→ τσ(a) and τ(b) 7→ τσ(b) by σ′. By composing
by σ′ if needed, we can suppose that a, σ(a), b and σ(b) are in ]−2K, 2K[. Thus

there exists τ ∈ Sym(]− 2K, 2K[) such that τσ(N) = N.

Hence τσ ∈ Bd(e, 0). Since Bd(e, 0) ⊆ V FV as shown above, τσ ∈ V FV .

Moreover since τ ∈
∼
V ⊆ V , σ ∈ V FV . Thus

Bd(e, 2) ⊆ V FV.

Therefore dN is maximal on So(Z,N).

�

4.2 Proof on S(Z,N)

We have proven that dN is maximal on So(Z,N). So now we are going to prove
it on S(Z,N).

We first prove that (S(Z,N), dN) is large scale geodesic. Let σ ∈ S(Z,N),
k = |σN 4 N| and t : n 7→ n+ 1. Then tr(t) = 1 and dN(t, id) = 1. Let i = tr(σ)
and τ = σt−i. Then since tr is a morphism, we have

tr(τ) = tr(σ) + tr(t−i) = i− i = 0.

Thus τ ∈ So(Z,N). Moreover

dN(τ, id) 6 dN(τ, σ) + dN(σ, id)

6 dN(σ, id) + dN(t−i, id)

6 k + |i|
6 k + k

6 2k.

Thus τ is the product of at most 2k elements with distance smaller or equal
than 2 to the identity. Since σ = τti, σ is the product of at most 3k elements
with distance smaller or equal than 2 to the identity.

Second we prove that dN is coarsely proper. Let r > 1. The aim is to show
that Bd(id, r) is bounded, i.e. for any open identity neighborhood V there exists
a finite subset F ⊆ G and an n such that Bd(id, r) ⊆ (V F )n.
Since So(Z,N)is an open subgroup of S(Z,N), we can suppose that V ⊆ So(Z,N).
From what we have done above, we already know that there exists n and a finite
subset F ∈ So(Z,N) such that

Bd(id, r) ∩ So(Z,N) ⊆ (V F )n.

By letting
∼
F = F ∪ {t−r, ..., tr}, we have that

Bd(id, r) ⊆ (V
∼
F )n+1.

Indeed, if σ ∈ Bd(id, r),
|tr(σ)| 6 d(r, id) 6 r.
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Then ttr(σ) ∈
∼
F and σ = τttr(σ) by letting τ = σt−tr(σ). So tr(τ) = 0. Thus

τ ∈ So(Z,N). Therefore τ ∈ (V F )n. Hence

σ ∈ (V F )n
∼
F ⊆ (V F )n+1.

Therefore dN is maximal on S(Z,N).

Thus we have proven that S(Z,N) is locally bounded.

�
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5 Embedding in S(Z,N)

We want to know what can be embedded in S(Z,N).
The aim of this part is to show that Zk can be embedded in S(Z,N) where
Zk =< e1, ..., ek > vectors of the canonical basis of Zk.

On Zk, there is the l1 metric which is the distance to the generators defined
for (n1, ..., nk), (m1, ...,mk) ∈ Zk by

dl1((n1, ..., nk), (m1, ...,mk)) =

k∑
i=1

|ni −mi| .

We want to find a map ρ : Zk → S(Z,N) such that

dl1((n1, ..., nk), (m1, ...,mk)) = dN(ρ(n1, ..., nk), ρ(m1, ...,mk)).

Let ρ(ei) = τi for 1 6 i 6 k where

τi(x) =

{
x+ k if x ≡ i[k],

x otherwise.

For (n1, ..., nk) ∈ Zk and p ∈ N,

ρ(n1, ..., nk)(p) = (τn1
1 ◦ · · · ◦ τ

nk

k )(p)

= p+ nik where i is the only element of {1, ..., k} such that
p ≡ i[k].

Now we prove that dl1 is also left-invariant. Indeed for m = (m1, ...,mk),
n = (n1, ..., nk), p = (p1, ..., pk) ∈ Zk,

dl1(p+ n, p+m) =

k∑
i=1

|(pi + ni)− (pi +mi)|

=

k∑
i=1

|pi + ni − pi −mi|

=

k∑
i=1

|ni −mi|

= dl1(n,m).

Since dl1 and dN are left-invariant, it is enough to show for any (n1, ..., nk) ∈ Zk

that
dl1((n1, ..., nk), (0, ..., 0)) = dN(ρ(n1, ..., nk), id).

Indeed for any (m1, ...,mk) ∈ Zk,

dl1((n1, ..., nk), (0, ..., 0)) = dl1((m1, ...,mk) + (n1, ..., nk), (m1, ...,mk)).

Moreover

dl1((n1, ..., nk), (0, ..., 0)) = dN(ρ(n1, ..., nk), id)

⇔
k∑
i=1

|ni| = |ρ(n1, ..., nk)N 4 N|.
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So we need to show the above. To do that we fix i ∈ {0, ..., k − 1}. Let

Ai = {p ∈ Z : p ≡ i[k]}.

Each Ai is ρ-invariant: for any q ∈ Z,

ρ(n1, ..., nk)(i+ qk) = i+ (q + ni)k.

Hence Ai = {i+ qk : q ∈ Z}. Let Bi = {i+ qk : q ∈ N} = Ai ∩ N. Thus

N = Bo t · · · tBk−1.

Clearly ρ(n1, ..., nk)(Bi) = nik +Bi ⊆ Ai. Moreover we have

ρ(n1, ..., nk)N 4 N =
⊔
i

ρ(n1, ..., nk)Bi 4
⊔
j

Bj

=

k−1⊔
i,j=0

ρ(n1, ..., nk)Bi 4 Bj .

If i 6= j then ρ(n1, ..., nk)Bi ∩ Bj = ∅. Therefore ρ(n1, ..., nk)Bi 4 Bj = ∅.
Hence

ρ(n1, ..., nk)N 4 N =

k−1⊔
i=0

ρ(n1, ..., nk)Bi 4 Bi.

Now we look at the ni’s for each Bi.
The first case is if ni > 0 :

ρ(n1, ..., nk)Bi = {i+ (ni + q)k : q ∈ N} ⊆ Bi.

So ρ(n1, ..., nk)Bi 4 Bi = Bi \ ρ(n1, ..., nk)Bi.

If x ∈ Bi, then x = i + qk where q ∈ N. So if x ∈ ρ(n1, ..., nk)Bi, then
x = i+ (q′ + ni)k with q′ ∈ N. Thus

i+ qk = i+ (q′ + ni)k.

Hence q = q′ + ni. The reasoning also goes from bottom to top.
So x ∈ ρ(n1, ..., nk)Bi if and only if q′ = q − ni > 0. Thus

x ∈ Bi \ ρ(n1, ..., nk)Bi ⇔ q − ni < 0⇔ q < ni.

Therefore ρ(n1, ..., nk)Bi 4 Bi = {i+ qk : q ∈ {0, ..., n− 1}}. Hence

|ρ(n1, ..., nk)Bi 4 Bi| = |ni|.

The second case is if ni < 0 :
ρ(n1, ..., nk)Bi = {i+ (ni + q)k : q ∈ N} ⊇ Bi. So

ρ(n1, ..., nk)Bi 4 Bi = ρ(n1, ..., nk)Bi \Bi
= {i+ (ni + q)k : q ∈ N, ni + q < 0}
= {i+ (ni + q)k : q ∈ {0, ...,−n− 1}}.
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Therefore we also have |ρ(n1, ..., nk)Bi 4 Bi| = |ni|. Hence

|ρ(n1, ..., nk)N 4 N| =
k∑
i=1

|ni|.

Therefore ρ : Zk → S(Z,N) is an isometric embedding. Hence
Zk 6 S(Z,N). This embedding would then allow us to find the asymptotic di-
mension of S(Z,N). This is done in the third section by Bell and in Dranishnikov
[BD08].
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