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Abstract

In this paper we generalize the work of Berenstein and Henson about model theory of
probability spaces with an automorphism in [BH04] by studying model theory of probability
spaces with a countable group acting by automorphisms. We use continuous model theory
to axiomatize the class of probability algebras endowed with an action of the countably
generated free group F, by automorphisms, and we can then study probability spaces
through the correspondence between separable probability algebras and standard probability
spaces.

Given an IRS (invariant random subgroup) 6 on F,,, we can furthermore axiomatize the
class of probability algebras endowed with an action of the countably generated free group
F, by automorphisms whose IRS is 8. We prove that if 8 is hyperfinite, then this theory is
complete, model complete and stable and we show that the stable independence relation is
the classical probabilistic independence of events.

In order to do so, we give a shorter proof of the result of Gabor Elek stating that given a
hyperfinite IRS € on a countable group I', every orbit of the conjugacy relation on the space

of actions of I" with IRS 6 is dense for the uniform topology.
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1 Introduction

1 Introduction

Section 2 deals with graphs. We recall the definition of a graphing and prove some basic
properties about it. In particular, we give a proof of Aldous and Lyons that for every
convergent sequence of finite graphs, there is a graphing which is a limit of this sequence,

using the Bernoullization of a measure.

In Section 3 we focus our attention on the notion of hyperfiniteness of graphings. First
we recall a well known result about hyperfinite graphings : every hyperfinite graphing is a
limit of a convergent sequence of finite graphs. Then we present a version of a theorem of
Gébor Elek ([Elel2]) stating that hyperfiniteness is an invariant of statistical equivalence

(see Definition 2.9), using the general notion of Bernoullization of a graphing,.

In Section 4 we present the corollary of Rokhlin Lemma which is the key point in the
study of probability spaces with an automorphism conducted in [BH04]. The goal of this
section is to prove a generalization to hyperfinite pmp actions of this corollary that we call
the big theorem of this paper. Namely we prove that if 8 is a hyperfinite IRS on a countable
group I', then for any two pmp action o : I' — (X, u) and 8 : T' — (Y,v) on standard
probability spaces, F' € I finite and ¢ > 0 there is a pmp bijection p : X — Y such that

p{ze X :Vye F, 7P op(x) =poy*(@)}) >1-¢

In other words, the relation of conjugacy on the Polish space of pmp actions of I' on a
standard probability space having IRS 6 has dense orbits.
Moreover we prove a stronger version of the latter theorem involving the stabilization of

set of Borel parameters, when « is a factor of S (see Definition 4.11).

Finally in Section 5 we use the tools of Section 4 to study model theory of atomless
probability algebras with a countable group I' acting by automorphisms. In fact, without
loss of generality, we restrict our study to actions of F,, the countably generated free group
as any action of a countable group can be seen as an action of F,.

First we recall the correspondence between separable models of the latter theory and
pmp actions of Fy, on standard probability spaces using the classical correspondence between
separable atomless probability algebras and standard probability spaces and then applying
lifting theorems. For any IRS 6 on Fi, we define a theory 2y representing pmp actions with
IRS 6, after proving that the IRS is indeed expressible in the first order.

Then the big theorem of Section 4 and the stronger version we already talked about
allow us to prove that these theories for # hyperfinite are complete and model complete
by repeating the proofs found in [BH04]. However, there is a small subtlety for quantifier
elimination. Indeed in general the theories of the form 2y for # hyperfinite do not admit
quantifier elimination. We prove that we can still get elimination of quantifiers by adding
the supports (see Definition 5.10) of the automorphisms to the signature of the theory, and
we use this to prove that our theories are stable and to describe the stable independence

relation given by non dividing.



2 Preliminaries

2 Preliminaries

Throughout the paper, the abbreviation pmp stands for ”probability measure preserving”.

2.1 About graphs

Definition 2.1. A graph G is a couple (V(G), E(G)) where V(G) is a set and E(G) is an
irreflexive and symmetric relation on V(G). Elements of V(G) are called vertices of G and

elements of E(G) are called edges of G.

For G a graph, for each v € V(G) we let degs(v) = {u € V(G) : (v,u) € E(G)}| and we
call sup,ev () dege(v) € N U {00} the degree bound of G. In the first two sections, we fix
d € N and unless it is precised otherwise, we consider only graphs of degree bound less than

d.

Definition 2.2. An isomorphism of graphs between G and H is a bijection f : V(G) —
V(H) such that Vz,y € V(G), (z,y) € F(G) < (f(x), f(y)) € E(H).

Definition 2.3. Let G be a graph, A € V(G) and B € E(G), then we define :
e VG (A)={veV(G):3ae A (a,v) € E(G)} the set of vertices adjacent to A.

adj
e VG.(B) = {ve V() :3ueV(G), (u,v) € B v (v,u) € B} the set of vertices

incident to B.

o E¢ (A) ={(a,v) € E(G) : a € A} the set of edges incident to A.

mc

We will write Voq;(A), Vine(B) and Ej,.(A) when by the context it is clear which graph

G is considered.

Definition 2.4. Let G be a graph, a subgraph of G is a graph H such that V(H) = V(G)
and E(H) < E(G). In this case, we write H € G.

If V < V(G), the subgraph of G induced by V is the graph (V(G),E(G) nV x V).
Nevertheless, in many cases it will be convenient to identify the induced graph on V' and
the graph (V, E(G) n'V x V) and therefore see the induced graph on V as a graph on the

set of vertices V.

Whenever G is a graph and x € V(G), we denote B (z) and we call the r-ball around
z in G the subgraph induced by G on vertices that are accessible from = with a walk of
distance at most r in E(G).

We consider three classes of graphs :

e G is the set of finite graphs, up to isomorphism.

e For r € N, G, is the set of rooted graphs of radius at most 7, up to rooted isomorphism.
e 9, is the set of rooted connected graphs up to rooted isomorphism.

In what follows, we will also consider graphs colored on vertices by the Cantor set
K :={0,1}":

o GK is the set of finite graphs colored on vertices by K, up to colored isomorphism.



2.2 Graphings

e Forr seN, Gfs is the set of rooted graphs of radius at most r and colored on vertices

by K, up to rooted isomorphism of graphs preserving the first s digits of the coloring
K

7,8

of any vertex. G,>, can also be seen as the set of rooted graphs of radius at most r
and colored by {0,1}*, up to rooted colored isomorphism. When r = s, we write GK

K
for G775.

o YK is the set of rooted connected graphs colored on vertices by K up to rooted colored

isomorphism.

In general, we write G ~ H to indicate that G and H are isomorphic. The type of isomor-
phism depends implicitly on the graphs G and H considered. For example if both G and H
are rooted graphs, the isomorphism is supposed to be a rooted isomorphism. If both G and
H are colored graphs, the isomorphism is supposed to be a colored isomorphism.

For G and H graphs colored by K, we write G ~; H when G and H are isomorphic

as non-colored graphs by an isomorphism of graphs that preserves the first s digits of the
K

coloring of any vertex. For G colored by K and a € G;7,, we just write G ~ a for G ~; a.
Note that this definition makes sense as there cannot be a stronger form of isomorphism
than ~4 between G and «.

In this paper we will have to consider many sequences, if (x,)nen 18 a sequence, we use

the notation Z to refer to (z,)nen.

For a € G, (resp. GF,) we let Ny S 9, (resp. 4f) be the set of z € ¥ (resp. ¥5)
with root u such that B?(u) ~ a. It is easy to see that %, (resp. ¥X) is a zero-dimensional
Polish space, whose basic clopen sets are the N, for « € G, (resp. G}fs). Notice that the
N, for a € GK already form a basis for the topology on ¥¥. For A € G, (resp. G?S) we

also write N4 for | N,.
aEA

2.2 Graphings

We now introduce the notion of graphing, which is at the intersection of the notions of

graphs and of pmp equivalence relations :

Definition 2.5. Let X be a standard Borel space and R be a Borel equivalence relation on
X. We let [R] be the group of Borel automorphisms of X whose graphs are contained in
R. We say that a Borel probability measure u on X is R-invariant if every element of [R]

preserves the measure u, namely, Vf € [R] fep = p.

From now on, for X any measurable space, we denote by PB(X) the set of probability
measures on X. We will only consider Borel o-algebras so in the following every element of

PB(X) is a Borel probability measure on X.

Proposition 2.6 (Admitted, [Kec04]). With the same notations as above, for any
e P(X), we can define two measures py and . on R by
o For all non-negative Borel f : R — [0,00], §, f dpy = § > f(z,y) du(x)
ye[z]r

e For all non-negative Borel f : R — [0,00], §, f dur =§ > f(y,z) du(x)

yelz]r

Then w; = . if and only if u is R-invariant.



2.3 Convergence of graphs

Definition 2.7. Let G a Borel graph on a standard probability space (X, x). Then the
equivalence relation Rg induced by G is the Borel equivalence relation on (X, 1) whose classes

are the connected components of G. We say that G is a graphing when p is Rg-invariant.
We can define a measure on the set of edges of a graphing by :

Definition 2.8. Let G(X, ) be a graphing and Z < E(G) Borel, the edge measure of the set
Z is defined by pgp(Z) := m(Z) = pr(Z) = § degz(z)du(x), where 11y and pu, are defined
with respect to the Borel equivalence relation Rg and degz(x) is the number of edges in Z

incident to x.

In this paper, any graphing is supposed of degree bound d, so the edge measure of a set
of edges is bounded by the measure of the vertices incident to this set. Namely, for all Borel
Z € B(G) we have 1(Vine(2)) < ip(2) < dpt(Vine(2)).

2.3 Convergence of graphs

To any finite graph and to any graphing we can associate a probability measure on %, (resp.

@K .
o If G € G (resp. GK), then let o be the probability counting measure on V(G) and
7g : V(G) — G, (resp. V(G) — 9K) defined by 7¢(v) = [G,v]. Now let ug = gy pic-

e If G is a graphing on a probability space (X, p), then mg : V(G) — % (resp. V(G) —
@K defined by mg(z) = [G,x]. Now let ug = 7g,p.

For G a graph, r € N and o € G, (resp. 7,8 € N and G, ; let V,(G) = {v € V(G) :
B%(v) ~ a}.
Note that since measures on %, (resp. ¥X) are determined by their values on the clopen

sets N, for a € [ JG, (resp. |G 5), the measures ug and pg are totally determined by the
r T,8
equalities jic:(No) = o (Va(G)) and pig(Na) = u(Va(G).

Definition 2.9. For G a finite graph and G a graphing, we call pug and pg the random
graphs associated respectively to G and G.
We say that two graphings G and H are statistically equivalent if ug = uy.

Definition 2.10. Let X be a Polish space along with its Borel o-algebra, then we call
the weak topology on B(X) the topology generated by the applications g — Sfdu, for
f:X — [0, ] continuous and bounded.

For this topology, () converges to p if for every bounded continuous function f : X —
[0, 0], we have nh_r)rgo § fdu, = § fdp. In this case we say that (u,) weakly converges to

w and we write () = p.

Proposition 2.11 (Portmanteau theorem, Admitted, [Kec10]). The following are equivalent

1. (pn) = 1
2. VC < X closed, limsup u,(C) < u(C)

n—0o0

3. YU < X open, limioréf wn(U) = w(U)
n—



2.4 Realization of a limit of graphs by a graphing

We now want to describe weak convergence in the spaces (%) and P(4K). For this

we have the following lemma :

Lemma 2.12. Let X be a zero-dimensional Polish space along with its Borel o-algebra and
let (Uy) be a basis of X consisting of clopen sets. Then the weak topology on PB(X) is the
topology generated by the family of applications (1 — w(Uk))ken-

Proof. Suppose (f,) = u, then by Proposition 2.11, Vk € N,
linmj;p pn(Uy) < p(Ux) < liminf pi, (Ug) so lim 15, (Uy) = po(Up)-

Conversely, suppose that Yk € N lim p,(Uyx) = u(Uyx). Take any open set U € X
and (k;) a finite or countable sequencenglooN such that U = | |, Ux,. Using discrete Fatou’s

Lemma, we then have

liminf u,(U)

liminf ", (Us,)

n—w n—a0
> Zhnni inf pin (U,)
= ZM(UM
= MZ(U)

So by Proposition 2.11, (u,) = p. O

Thus, if X be a zero-dimensional Polish space and (U,,) is a basis of X consisting of clopen
sets, then the weak topology on B(X) is induced by the distance dy, (1, ) = Y 5 |p(Uy) —

neN
v(Up)|-

For G = (G,,) € GN (resp. GKN), we say that G converges (or is a convergent sequence)
when (ug, ) weakly converges in B(%s) (resp. B(4K)). Without loss of generality, we may
suppose that any convergent sequence of graphs G = (G,,) verifies nlgrgo |[V(G,)| = o, since
if G is a finite graph and H is a graph composed of finitely many disconnected copies of G,
then pug = pg. From now on, every convergent graph sequence considered is supposed to
satisfy the latter property.

IfGis a convergence sequence, we denote by pg the weak limit of the sequence (ug,, )
and we call it the Benjamini-Schramm limit of G.

As G, (resp. ¥X) is a zero-dimensional Polish space and the N, for r € N and a € G,
(resp. r,s € Nand a € GES) is a basis consisting of clopen sets, G converges if and only if
for any o, (pa, (Na))nen converges and in this case, pg(Na) = nlgrgo b, (Na).

Finally, if G is a graphing and G = (G,) € GV is a sequence of finite graphs, we say that
G converges to G if (ug,) = pg. If G = (Gn) is a sequence of graphings, we say that G
converges to G if (ug,) = ug.

2.4 Realization of a limit of graphs by a graphing
Two questions naturally arise from the definitions of the latter paragraph :
1. Is every graphing a limit of finite graphs ?
2. Does every convergent sequence of finite graphs converge to a graphing ¢

7



2.4 Realization of a limit of graphs by a graphing

While the first one is an open conjecture of Aldous and Lyons and will be discussed
partially in Section 3, the answer to the second one is positive. We devote this subsection

to the construction of a suitable graphing.

2.4.1 Unimodularity

First, one can define a Borel graph structure on %, (resp. ¥X) by letting (z,y) € E(%)
(resp. E(4K)) if and only if there is a connected graph (resp. a connected graph colored by
K) G and (u,v) € E(G) such that z = [G, u] and y = [G,v]. In other words, (z,y) € E(%)
if and only if y can be obtained from z by changing the root according to an edge of x.
From now on we write %, (resp. ¥X) either to talk about the graph we just defined or its
underlying space.

Under certain conditions, the latter graph is locally similar to its elements, as witnesses

the Lemma below :

Lemma 2.13. If a graph G has no automorphism, then the graph with vertices
{[G,v] : ve V(G)} and edges induced by changing the root by an adjacent vertex is isomor-
phic to G.

Proof. By construction the map v — [G,v] is a surjective graph morphism. If it was not
injective, there would be at least two different vertices v1,v2 such that [G,v1] = [G, v2], in

other words, there would be an automorphism of G sending vy to vs, hence the result. [

Thus, if 4 € P(Y,) is concentrated on graphs with no automorphism, then for a € G,
pay (No) = p({z € Gy : B (x) ~ a}) = p(Na)

However, even in this case, we cannot just take the graph on (%, us) to answer the
question because p5 may not be Rg, -preserving. Nevertheless, us is always a unimodular

measure :

Definition 2.14. Let %, be the set of connected birooted graphs, namely of connected

graphs with an ordered pair of roots, up to birooted isomorphism.

Definition 2.15. Let u € B(%) (resp. P(YXK)). We define two measures pz, and pr on
G, (resp. 9X) by
e For all non-negative Borel f, {, f du. = Sg* > flx,u,v) du([x,u))
veV (z)

e For all non-negative Borel f, {,, _f dur =, Z( )f(:r,v,u) du([z, ul)
veV (x

We call 4 unimodular if p;, = pg.

Of course for every finite graph G, pug is unimodular as a linear combination of Dirac

measures, so the fact that ps is unimodular follows from :

Lemma 2.16. FEvery weak limit of unimodular measures on PB(Yy) is unimodular.

Proof. Let (u,) be a sequence of unimodular measures in (%) (resp. P(ZK)) weakly
converging to p. Let’s show that ur = pg.



2.4 Realization of a limit of graphs by a graphing

Like Y, %y is a zero-dimensional space Polish space. For r € N, define G** to be the
set of birooted graphs (z,u,v) such that x = B*(u) u B¥(v), up to birooted isomorphism.
Then a base for the topology on %, composed of clopen sets is given by the
N = {[z,u,v] € Gy : Bf (u) U BE(v) ~ 8} for r € N and § € G}*. Moreover, the Ng for 3
connected already form a base for this topology. Thus letting CG** be the subset of G¥*
consisting of the connected elements, we only need to prove that p;, and pp coincide on the
Ng for g e [ JCGF*.

The maps u — >, In,([z,u,v]) and u — > 1n,([z,v,u]) are continuous and
veV (z) veV (x)
bounded (indeed, [z,u,v] € Ng = dg(u,v) < 2n) so by weak convergence of the sequence

(fn)-

o) = [ % (el duleu)

veV (x)

= lim f%‘ Z In, ([x,u,v]) dpn ([, u])

n—o0
veV (z)

= lim ]lNﬁ d/.l/nL

n—0o0 g**

= nlgr;o , In, dpng
*sk

= hm Z In, ([z,v,u]) dpn([2,u])
G veV (z)

_ J S A, ([, 0, u]) dpa([z, u))
G veV (z)
= pugr(Np)

Hence p is unimodular. O

Now there are natural applications ® : %, — Rg, and ®¥ : 9K — Ryx (recall that
Ry,
(resp. Rg};) is the equivalence relation on %, (resp. ¥X) induced by its graph structure),
defined by [z,u,v] — ([z,u],[z,v]). ® (resp. ®K) is a bijection when restricted to the
graphs that have no automorphism.

Thus, if 4 € P(Z) (resp. P(ZK)) is unimodular and concentrated on the elements [z, u]
of 4, (resp. 9X) such that z has no automorphism, then ® (resp. ®¥) is a bijection and it
is easy to see that ® (resp. ®K) sends uz, to y; and pug to p,.. By Proposition 2.6, i is then

Ry, -invariant (resp. Rg;f—invariant), and 80 (%, it) (resp. (49X, 1)) is a graphing.

Combining the latter results, we see that if p4 is concentrated on the elements [z, u] of
4, such that x has no automorphism, then G converges to the graphing (%, pg). In the

general case, we use the Bernoullization of p s to break symmetries.



2.4 Realization of a limit of graphs by a graphing

2.4.2 Bernoullization of a measure

Definition 2.17. Let p € (%), we define the Bernoullization of y and we denote by ¥
to be a Borel probability measure on ¥X extending y and such that the probabilities of

colorings follow the Lebesgue measure on K.
K

.87

of o, we let Ag be the coefficient % where G, G5 are respective representatives for

Namely for r,s € N and a € G letting 8 € G, be the underlying colorless graph

the classes 3 and a. Then we have u¥(N,) = QSJAT%QHM(N@, since 25,‘%%,1” is indeed the

Lebesgue probability that a random coloring of an element of Ng induces an element of N,.

The Bernoullization of 5 can be obtained with probability 1 by coloring randomly
independently the graphs GG,, and taking the Benjamini-Schramm limit :

Lemma 2.18 ([Elel0]). Let G = (G,) € GN be a convergent sequence of graphs and pe €
B(Y:) be its Benjamini-Schramm limit measure. Let ug € P(YK) be the Bernoullization of
pa- Let Ca be the product of the spaces Ca, for n € N endowed with the product measure v .
Cga is the space of random and independent colorings on the sequence G. Force Ca let us
denote the graphs Gy, colored with ¢ by GS,.

Then V*c € Cg, the sequence (GY,) converges to ,ug in the sense of Benjamini-Schramm.

Proof. In this proof the hypothesis that lim |V(G,)| = oo is necessary.
n—oow
Take a € GK

T,87

we denote by 8 € G,. the underlying colorless graph. With this notation,
we have j15(Ny) = %ué(Nﬂ) by the definition of the Bernoullization.
Our goal is thus to show that V*ce Cq lim puge (No) = %/;@(Nﬁ).
n—0o0 "

For u € V(Gﬁ) we let Cp(a) = {ce Cq : BS» (u) ~ a}, then Yu € V(G,,),
v(C*(a)) = %. However, we can’t directly apply the law of large numbers, since the

C¥ () may not be independent for u ranging over V(G,,).

Claim 2.18.1. Let m € N, then there is [ € N such that for any graph G there is
a coloring of G by [ colors such that two different vertices having same color are at

distance at least m one of the other.

Proof. Set I = d™*+! +1. It is a well known fact that any simple graph of degree bound
k can be colored properly by k+ 1 colors. Define G«,, to be the simple graph on V(G)
whose edges are the pairs {x, y} such that dg(x,y) < m. Note that since G is of degree
bound d (every graph is supposed so in this section) G, is a simple graph of degree
bound less than d™*!, so it can be colored properly with I = d™*! + 1 colors. Now

this induces a suitable coloring of G. |

Recall that V3(G,,) = {ve V(G,) : BE"(v) ~ B} and V,(GS) = {ve V(G,) : BE» (v) ~
a}. By the claim, there is I € N such that for any n, there is a partition P, of V3(G,,) into
[ pieces such that VP € P, Yu,v € P dg, (u,v) < 2r = u = v. For ¢ > 2 let P}, , be the
subset of P,, consisting of the elements P such that % > ?

Let € > 0 be small enough. By construction of P,,, for P € P, and any distinct elements

Uy, ..., ur € P, the sets Cp,’ () are independent for j = 1,... k. As lim |V(G,)| = o, we
n—0o0

10



2.4 Realization of a limit of graphs by a graphing

have lim min |P| = c© and so by the law of large numbers, V*c € Cg, for n big enough

n—00 PE/P;L,q

and P € P, , we have

'IVa(G%) nPl 45

P QS»V(Q)l‘ =€

Moreover, the elements of P;Lyq are disjoint so we get, for n big enough and P € P;L,q

ValG9) 0 UPhl A3 |
|JP, q| 25|V ()]
Furthermore, by definition of P;, ,, we have % < > ? =2"%g0 for n and ¢
" PeP,,
: IUP .l Va(G) n UPr |
big enough, |7z — u@(ng)‘ <eand | =t - pae (Nao)| < €.

Combining these inequalities gives us

A Va(GR) nUPrLl IUP A
B - _ n n.q n,q B -

which implies, for n and ¢ big enough,

Aj Va(G) nUPrl A
8 R . a\n n,q B ~
vt =2 S Ty S vate

(Ng) + 3¢

hence the final inequality,

A3 As
mﬂé(Nﬁ) —3e < HaGe (Na) < mﬂé(]\fﬁ) + 4e

O

Theorem 2.19. Tuake a convergent sequence of finite graphs G = (Gn) and let Gg be the
graph 9X endowed with the measure ug. Then Gg is a graphing and G converges to Gg.

Moreover, V¥x € 49X, x ~ (94X x). We call Ge the canonical limit of G.
Proof. First, by definition of the Bernoullization, the measure ug is concentrated on graphs
without automorphism. The following are consequences :

e By Lemma 2.13, V¥z € 9K, o ~ (9K, z).

e By Lemma 2.18 ,ug is a weak limit of linear combinations of Dirac measures and thus
is unimodular by Lemma 2.16. As remarked before, in the case where the measure is
concentrated on graphs without automorphism, this shows that ,ug is Rg;‘(—invariant.

In other words, G is a graphing.

e Finally, again by Lemma 2.13, for a € G,
g

1G5 (Na) = pg (Ca™* ) = u§ (Na) = pg(Na)

so G is indeed a limit of G.

11



3 Hyperfiniteness

3 Hyperfiniteness

In this section every graph considered is still supposed to be of degree bound at most d,

with the exception of the last corollary.

Definition 3.1. Let G(X, 1) be a graphing. G is called hyperfinite if
Ve > 03IM € N 3Z < E(G) Borel such that ug(Z) < e and the subgraphing H = G\Z has

components of size at most M.
This section contains the proofs for two important properties of hyperfiniteness :

1. Every hyperfinite graphing G is the limit of a sequence of finite graphs G.

2. Hyperfiniteness is an invariant of statistical equivalence. That is, if G and H are
statistically equivalent (recall that it means that ug = pz), then G is hyperfinite if
and only if H is.

Before anything else, let’s note that we can also define hyperfiniteness according to the

next proposition. We will use both definitions indifferently in the rest of the paper.

Proposition 3.2. Let G(X, u) be a graphing, then the following are equivalent :
1. G(X, p) is hyperfinite.

2. Ve > 0 3Z < E(G) Borel of edge measure ug(Z) < € such that the components of the
graphing G\Z are finite.

Proof. Only one direction is of interest. Let ¢ > 0 and Z < F(G) Borel of edge measure
ur(Z) < € such that the components of the graphing H = G\Z are finite. For n € N let
X<, be the Borel subset of X consisting of the components of H of size at most n. It is
clear that X = | J X<, and p is a probability measure so hm u(X\X<n) = 0. Take M e N

neN

such that u(X\X<nr) < Ef“%f() and set Z' = Z u Elt

wmc

(X\X<ar). Then pg(Z') < € and
moreover, the graphing G\Z’ has components of size at most M by definition. O

3.1 Hyperfinite graphings are limits of finite graphs
We begin with a very useful lemma.

Lemma 3.3. If G(Z,n) is a graphing, A a subgraphing and (A,) a sequence of
subgraphings of G such that lingo ne(E(A) A E(A,)) =0, then A, converges to A in the

sense of Benjamini and Schramm.

Proof. We write D,, for E(A) A E(A,). Let r € N and o € G, we set

={z€ Z:BY(2) N Vine(D,) # &}. By measure preservation, we get
(D) < d" . (Vine(Dy)) < d".ne(D,), so nlgrolo n(D!) = 0. Furthermore, for z ¢ DI, w
have of course BA(z) ~ BA»(2), hence

1a(Na) = pa, (Na)| = [0(C2h) = n(Ca)
In({z€ Z: B{(2) ~ a}) —n({z € Z : B{"(2) ~ a})|
= |n({ze Dy, : B{(2) ~ a}) —n({z € D}, : B"(2) ~ a})|

2n(Dy,)

N

12



3.2 Hyperfiniteness is an invariant of statistical equivalence

Thus (A,) converges to A. O

Definition 3.4. For M € N let ¢); be the set of unrooted connected graphs of size at most
M. If G is a finite graph then for S € 9 we let C§ = {v e V(G) : [v]g ~ S}. Moreover, we
let c§ = I‘I/C(fé\)l If G(X, ) is a graphing, then for S € %y, we let CY = {z e X : [z]g ~ S}
and we let ¢ = u(C%).

Theorem 3.5. Let G be a hyperfinite graphing, then there is a sequence G converging to G.

Proof. By Lemma 3.3, every hyperfinite graphing is a limit of graphings whose sizes of

components are bounded. The conclusion then follows from

Claim 3.5.1. Let G be a graphing whose components are of size at most M, then

there is a sequence of finite graphs G converging to G.

Proof. 1t is clear by measure preservation that

VreNVae G, ug(Na) = Y. cps(Na)
SegM

so choose a sequence ((k,(S) : S € %ar))nen of elements of N9 such that

VS e 9y lim % = cg. Such a sequence exists because Y| cg = 1. We then
n—00 P n SeGn
define the graphs G,, to be the disconnected union of ny(S) disconnected copies of S

for each S € 4. Obviously, ug, (No) = D %.MS(NQ), thus (pg, ) = ug. B

S€Gn sea

O

3.2 Hyperfiniteness is an invariant of statistical equivalence
All the results of this subsection are due to Gabor Elek [Elel2].

Definition 3.6. Let G be a graph. For A € V(G) finite, we define the boundary of A in
G, denoted by 0g(A) to be the set of edges incident to both A and V(G)\A. We also define
the isoperimetric constant of A in G by ig(A) = liifl'

We say that a graph G is amenable if Ve > 0 34 € V(G) finite such that ig(A) < e.

Lemma 3.7. Let G(X, ) be a graphing, H be an induced subgraphing and € > 0. Then
there is a Borel K < X, which intersects every amenable component of H and such that the

components of K are finite sets of isoperimetric constant less than € in H.

Proof. We define K by induction. The idea is that for each n € N we add to K finite sets of
radius less than n and having isoperimetric constant less than €, in a way that any set that
we add stay disconnected from any other set in K.

Forn =0, let Ky = (.

Suppose K,,_1 € X is defined. We then define K,,. First, by a result of Kechris, Solecki
and Todorcevic, any Borel graph of degree bound d can be colored properly in a Borel way

with d + 1 colors. Applying the proof of Claim 2.18.1, we see that there exists a Borel

13



3.2 Hyperfiniteness is an invariant of statistical equivalence

partition X = | | A; such that two distinct elements of an A; are at distance at least 2n + 2

i<ly
in H.
For i = 0 and z € Ay, we let R™? be the set of finite subsets S € X such that :
e reS
o SC By(x)
[} ZH(S) <é€
¢ E#L(‘(S) n Ez;ch(anl) =J

Take a Borel linear order on the finite subsets of X and let K?L =K, u U min RZ’O,
CEEAO

with the convention that min ¢ = ¢J.

Suppose K!~! already defined and for z € A; we let R™* be the set of finite subsets
S € X such that :

e zref

e SC By(x)

° ZH(S) <e€

o ElL.(S)n EL (K =&

Then let K} = K:"'' U |J min R™'. Finally let K, = K!» and K = |J K,.
x€EA; neN .
By construction it is clear that the components of K are the sets of the form min R}*,

which are finite sets of isoperimetric constant less than € in H. Let’s prove that K intersects
every amenable component of H :

Let C be an amenable component of H and suppose that K n C' = . Then obviously
VneNVi<l, Ki nC = ¢, thus the construction of the R™? shows that R is the set of
finite subsets of X such that :

exef

o SC B,(x)

e iy(S) <e
Since C is amenable, let S © C be a finite subset of isoperimetric constant iy (S) < €. Take

any = € S and a natural number n such that S € B, (x). Let A; be the set containing z
in the partition X = | | 4;. By the remark above, S € R™* therefore 1 € K n C # (&, a

i<ln
contradiction. O

Theorem 3.8. Let G(X, 1) be a graphing, then the following are equivalent :
1. G is hyperfinite.
2. For every subgraphing H < G of positive measure, almost all the components of H are
amenable.
Proof. 2. = 1. :
Suppose 2.. We let 2 be the set of families &/ of Borel subsets of X such that :
e VAe o u(A) > 0.

e VA # A’ € & no vertex in A is adjacent to a vertex in A’.

14



3.2 Hyperfiniteness is an invariant of statistical equivalence

e For any A € &/, the components of ng\ U v, (a) are finite sets of isoperimetric
A’ )

constant less than € in ng\ U V&, (4
Al s

Let us order 2 by inclusion. Then ¢ € 2 and every chain of 2 has an upper bound in %,
namely its union, so we can apply Zorn’s Lemma.

Let A be maximal in 2(. Suppose that p( U (A)) <1, then let Y = X\ U adj A)

adj
and consider the subgraphing H induced on Y By Lemma 3.7 and the hypOtheblb 2., there
is a Borel set K € Y which interesects almost every component of H and such that the

components of K are finite sets of isoperimetric constant less than € in H. Then we have :

e As K is a complete section for Y, by Feldman-Moore Theorem, Y can be covered by

a countable union of sets of measure p(K) and therefore p(K) > 0.
e VA e o/ no vertex in A is adjacent to a vertex in K by definition of Y.

e Note that two elements of Y adjacent in G are adjacent in H by definition, so the
components of K for G are the components of K for H and therefore are finite sets
in G. Furthermore, the boundary of a component of K in G ' X\ALEJ VO,(A) = Gy is
contained in Y as well, so any component of K has same boundary in Gy and H. It
follows that the components of K in G,y are finite sets of isoperimetric constant less

than ¢ in gry

But this means that &/ U {K} € 2, contradicting the maximality of /. That proves that

U ad_] =1

Fmally, let Z = |J dg A < E(G) and consider the graphing G, | ng_(A)\Z.
Aeof Acey @9

PX\ U Vfdjm’))
Al#£A ¢
Since the sets A are pairwise disconnected for A € &/, by removing Z we remove the
boundary of each finite component of A in G, and so we end up with only finite com-

ponents in Q U VO, A)\Z . Moreover, for each finite component C of an A € o/, we have
X\ U Ve

10 yA) < ep(A) and so
AT£A

ne(Z) <e

))C’| e|C| so by averaging we get pg(dg 'X\A,LiA"fdj(A/)

1. = 2.
Suppose that G is hyperfinite and 2. does not hold. There is a subgraphing H < G of

positive measure such that for each component C of H, inf  iyx(A) > 0 and without
Acc finite
loss of generality we may suppose that 3n € N such that for each component C' of H, we

have inf iy (A) = L, by o-additivity of p.
Acc finite

By hyperfiniteness of G, let Z < E(G) be such that up(Z) < W and all the
components of G\Z are finite.

Take D a component of G\Z. For C' a component of H, as C' n D is a finite subset of C,
we have |0y (C n D)| = M Moreover, if C' # C’ are components of H,
o1(C n D) noy(C' n D)< EX (C)n EX (C') = &. Combining these inequalities for the
components C1, ..., C, that intersect D, we get |0y (D nV(H))| = W. Furthermore,
ou(DnV(H)) < Ezgm(D) N Z, indeed every edge in G\Z witnesses that its two extremities
are in the same component for G\Z so such an edge cannot be in the boundary of D.

We just proved that for each component D of G\Z, |EY, (D) n Z| = W and thus

on average ug(Z) = %, contradicting the definition of Z. O

15



3.2 Hyperfiniteness is an invariant of statistical equivalence

Definition 3.9. Let G(X, u) and H(Y,v) be two graphings. A graphing factor map is

a pmp almost surjective map 7 : Y — X such that V*y € Y m[,), is an isomorphism of

H
graphs.
We say that G is a factor of H and we write G = H if there exists a graphing factor

map 7:Y — X.

Proposition 3.10. Let G(X, u) = H(Y,v) two graphings. Then G is hyperfinite if and only
if H is.

Proof. Let m:Y — X be a graphing factor map.

Suppose that G is hyperfinite, take € > 0 and Z < E(G) such that ug(Z) < € and the
components of G\Z are finite. Then the set 771(Z) < E(H) witnesses the hyperfiniteness
of H.

Conversely, suppose that G is not hyperfinite. Then by Theorem 3.8 there is a subgraph-
ing K € G of positive measure such that not almost all components of K are amenable.
Then 7~ 1(K) € H is a subgraphing of positive measure and not almost all components of

7~1(K) are amenable, therefore, H is not hyperfinite. O

Theorem 3.11. Let G and H be statistically equivalent graphings, then G is hyperfinite if
and only if H 1is.

Proof. Let H(X, p) be a graphing. Consider the map 7g, : Ry — % that sends (z,y)
to their component for H birooted in (x,y). It is easy to check that 7g, ,pu = py and
TRy wlr = Uy p. But H is a graphing, so y; = p, and it follows that py is unimodular.
Therefore by taking its Bernoullization we get a graphing G, (4X, p%)

The goal in this proof is to show that H is hyperfinite if and only if G,,,, is. The conclusion
will then follow from the fact that G, only depends on py.

Claim 3.11.1. There is a common extension to H and QMH. In other words there is
a graphing K such that both H and G,,,, are factors of K.

Proof. The chosen graphing will be the Bernoullization of . For any graphing H (X, 1)
(not necessarily on %, ), the construction of its Bernoullization H¥ presented below is

classical :

Definition 3.12. By Lusin-Novikov theorem, there exists a family (f; : i € N) of Borel
partial maps X — X such that H = | |, I'(fi), where I'(f;) is the graph of f;. Thus
we can embed H in X x N in a Borel way with the application @ : (z,y) — (z, p.(y))
where @, (y) is the only integer ¢ such that f;(z) = y.

The space on which the Bernoullization is defined is X x K", we will denote it by Xk.
It is endowed with its o-algebra of Borel sets for the product topology on Xk, which
is a Polish topology. Therefore, Xk is a standard Borel.

For the measure ¥, we begin by defining a measure on K" for each z € X with the

formula: i, = @ A® & do. Then let p¥ = §, 0, x o du(z) € P(Xk).
i€®(H) ¢ (H)q
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3.2 Hyperfiniteness is an invariant of statistical equivalence

Finally the Bernoullization of H is the graph H¥ on Xk defined by :
(. f): (y,9)) € E(H®) <= (z,y) € E(H) and fop, = gop,

The idea is to see the space Xk as the space of colorings by K on X, with the Lebesgue
measure on colorings. We take the convention that on points of the space Xk which

do not represent any element of H, the colorings must have value 0.

To see that H¥ is indeed a graphing, let us define, for (z,y) € Ry and f € K", f,_,,
to be the only element of KN such that ((z, f), (y, fomy)) € Ryx.

Take any Borel non-negative ¢ : Ryx — 0, we let ® : Ry — [0,00] be defined by

@(x,y) = SKN gp((.]?, f): (ya f1—>y)) d:uz(f)
We have

JR ¥ ()

f 2 (@ £), (9:9)) d (i, f)
e[z, flyx

J L o(x, ), (99)) d(6- x )z, ) dpu(=2)

HK

_ f fK o((2 ), (©,9)) du=(f) du(z)

(y, g)e z f]HK

f f Z ) (s famy)) dp=(f) dp(2)

], Pl f (4 F=)) dpi=(f) dn(2)
fX yE[ZZ]f(z, ) di(2)
= L{ Z D(y, z) du(z)
/. Z f 2 Fymas)) iy (F) du(2)

Joo 5 ottt aits) ante

J J Z (Y famy), (2, f)) dp=(f) dp(2)

_ j fK o(4,9), (2, 1)) dp=(f) du(=)

(y, g)G z f]HK

f f o((:9) (@, 1)) d(6= x 1) (. 1) dp(z)
X JXk

f]HK

|3 e e
XK (y,9)e[z. 1k

fRHK @ ("),
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4 The Rokhlin Lemma

Now there are two natural candidates for graphing factor maps Xx — X and Xx —
@K Let m: Xg — X be the projection on the first coordinate, and p : Xxg — ¥X be
the map sending (x, f) to the class of the rooted graph ([z]y,x), colored according to
I

It is quite obvious that 7 is a graph factor map from its definition. The case of p is
a little bit more interesting. Note that for almost all (z, f) € Xk, f is injective so
by Lemma 2.13, p(z, f) ~ ([p(z, f)]gf,p(%f)), which exactly means that V*(z, f) €
Xk, Pz, flx 1S @ graph isomorphism.

Finally, let r,s € N, a € GK

s and 8 € G, the underlying colorless graph.
Note that the Lebesgue probability of a coloring of 5 to give a colored graph isomorphic

A(V
. . g
to av is again 5oy, thus we have

psi™ (Na) 15 ({(z, f) € Xx : p(, f) € Na})

= u*({(z f) € Xk : 2 € V3(H) and f o ¢, colors BI(x) according to a})

- J(H) Qs\V(a du

N3 714 d
= M'H( )'28.\V(a)| 1%
= M%(Na)

therefore p is pmp and as a consequence, it is a graphing factor map.

We conclude by using the Claim and Lemma 3.10 : H is hyperfinite if and only if HX is
hyperfinite, if and only if G,,,, is. O

4 The Rokhlin Lemma

Recall that from now on, there is no more bound on degrees of graphs.

4.1 Measure preserving actions and Graphings

4.1.1 Classical Rokhlin Lemma

Rokhlin Lemma states that if 7 is an aperiodic measure preserving transformation of a
standard probability space (X, p), that is a bijection X — X that preserves u and such that
Supp(7) = {x € X : 7(z) = x} is null, then Vn € N Ve > 0 3A < X Borel such that the sets

A, TA, ..., 7" 1A are pairwise disjoint and pu( |_| TiA) > 1—e.
What we present in this paper is not a generahzatlon of Rokhlin Lemma itself but rather

of one of its important consequences :

Corollary 4.1 ("Rokhlin Lemma”). Any two aperiodic measure preserving transformations
71 and To on standard probability spaces (X, p) and (Y,v) are strongly equivalent, meaning

that Ve > 0 there is a measure preserving bijection p: X — Y such that
p{xe X :pom(x) =moplx)}) >1—c¢.
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4.1 Measure preserving actions and Graphings

Before presenting the proof, we have to introduce cycles.

Definition 4.2. Let (X, u) be a standard probability space, a cycle ¢ of period n € N is a
measure preserving Borel bijection X — X such that 34 € X Borel such that, up to a null

n—1
set, X = | | c?A. We call such a A a base for the cycle c.
i=0

Lemma 4.3. Let (X, p) and (Y,v) be standard probability spaces and cx,cy cycles of period
n respectively of X and Y. Then cx and cy are conjugated, that is 3p : X — Y a measure

preserving bijection such that V*z € X cy o p(x) = pocx(z).

Proof. Let A and B be respective bases for cx and cy. By the definitions of cycles, it is
clear that pu(A) = = = v(B) so by uniqueness of the standard Borel space, there exists a
measure preserving bijection 7: A — B.

Now we extend 7 into p : X — Y by letting p, GoA= =cloTo cX It is easy to check that

p is a measure preserving bijection that conjugates cx and cy. O
We are ready for the proof of the Corollary of Rokhlin Lemma :

Proof of "Rokhlin Lemma”. Let 7x : X — X and 7v : Y — Y be aperiodic measure
preserving bijections.
First, by the usual Rokhlin Lemma, for n € N*, there is a Borel A € X (resp. BCY)

such that p( |_| TEA) =1 — %H (resp. v( |_| B)=1- - +1) Without loss of generality,
=0 =0
n . n
we may furthermore suppose that p(| |75 A) = v(| |7 B) =1 — 5.
i=0 i=0
n X n )
Then we can define a cycle c¢x (resp. cy) of period n + 1 on | |74 A (resp. | |7-B) by
i=0 =0
setting
n—1 n—1
ze | J14A — 7(2) ye LUmB — 7(y)
cx i=0 and cy : i=0

reTRA — T (x) yetypB — 17"(y)

n . .
Now, using Lemma 4.3, we can find a measure preserving bijection p : | |7%A — | |7¢ B

i=0 i=0
that conjugates cx and cy and then extend it arbitrarily into a measure preserving bijection

p X - Y. It follows that

p({z e X :my op/(x) # p'omx(2)})

n . 2
< pl{ze J:J)T;(A c1y o p(x) # porx(x)} + ]
< € VA + IS B 4+
re LA mx(@) # ex@) +lye LB ) # e )} + 125
4
<
n+1

O

An aperiodic measure preserving transformation can be viewed as a free action of Z.
The goal of this section is to generalize the latter Corollary to hyperfinite actions of the free

group having a given IRS (i.e. Invariant Random Subgroup, defined in subsection 4.1.3).
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4.1 Measure preserving actions and Graphings

4.1.2 Hyperfiniteness for measure preserving actions
An equivalence relation is called finite if its classes are finite.

Definition 4.4. Let R be a Borel equivalence relation on a standard probability space
(X, i), we say that R is hyperfinite if there is a R-invariant connull subset of X on which
R is a countable union of finite Borel equivalence relations.

We say that a measure preserving action « of a countable group I' on (X, i) is hyper-

finite if the induced equivalence relation R, is hyperfinite.

It is obvious that any subequivalence relation of a hyperfinite equivalence relation is

hyperfinite. Conversely, we have the following :

Proposition 4.5 (Admitted,[Kecl0]). The union of an increasing sequence of hyperfinite

equivalence relations on (X, 1) is a hyperfinite equivalence relation on (X, p).

Note that we defined the notion of hyperfiniteness relative to a standard probability
space and thus to a measure. If we ask that R is the union of an increasing sequence of finite
equivalence relations on the whole set X and not just on a connull subset, we obtain the
classic definition of Borel hyperfiniteness. For this notion of hyperfiniteness, it is not known
whether the union of an increasing sequence of hyperfinite equivalence relations is always
finite.

Now any countable group I' is the increasing union of a sequence of finitely generated
subgroups, and so by Proposition 4.5 we get that a pmp action « of I" is hyperfinite if and
only if for every finitely generated subgroup A the restriction of o to A, which is a pmp
action of A, is hyperfinite.

From now on, we focus our attention on pmp actions of finitely generated groups. We
write finitely generated groups as couples (T',.S) where T" is a countable group and S is a

finite symmetric generating subset.

Definition 4.6. Let F be a finite set. A F-colored graphing on a standard probability
space (X, ) is a graphing G(X, u) endowed with a Borel map ¢g : E(G) — F. For (z,y) €
E(G), we call pg(x,y) the color of (x,y).

We will simply write G and consider the color implicitely when dealing with colored

graphings.

Fix d € N. Let 4} be the standard Borel space of rooted connected F-colored graphs of
degree bound at most d. For a F-colored graphing G(X, 1), we define a Borel probability
measure ug on 4F by letting 7 : X — 4F be the map that sends z to its F-colored

component rooted in x and setting pf = myp.

Definition 4.7. Let G(X, ) and G'(Y, v) be two F-colored graphings. A colored graphing
factor map 7 : Y — X is a pmp almost surjective map such that V*y € Y, [, is an
isomorphism of F- colored graphs.

We say that G is a colored factor of G’ and we write G % G’ if there is a colored factor

map 7:Y — X.

Let (I, S) be a finitely generated group. Let us consider a measure preserving action
a: T —~ (X,pn). We define a H(S)-colored graphing G, on (X, pu) by (x,y) € E(G,) if and
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4.1 Measure preserving actions and Graphings

only if 3s € S y = sz and we color the edges of G, by letting the color of an edge (z,y) be
{seS:y=sz}.

Lemma 4.8. Let (T, S) be a finitely generated group and let o : T —~ (X, u) be a pmp action.
Then « is hyperfinite if and only if G, is hyperfinite.

Proof. Suppose « is hyperfinite and let € > 0. Let (R,,) be an increasing sequence of finite

Borel equivalence relations on X such that, up to a null set, R, = |J R,. Since by definition
neN
E(G.) € Ry, we have, up to a null set, E(G,) = |J E(Ga) N Rn.
neN

Now the measure pp is finite (bounded by |S|) so klim wE(E(Go)\E(Ga) N Ri) = 0.
—00
Thus for k big enough, the set E(G,)\E(Ga) N Ry has edge measure less than e and by
removing this set from E(G,) we get a subgraphing H whose edges are contained in Ry,

which implies of course that H has finite components.

Conversely, suppose G, is a hyperfinite graphing. For n € N, let Z,, € F(G,) be a Borel

subset of edge measure less than 2% such that the graphing G,\Z, has finite components.

For n €N, let Z, = |J Zx. Then we have Vn € N, ug(Z)) > 5=t and Go\Z), < Ga\Z,,
k=n
has finite components.

Therefore, setting H,, := G,\Z,,, (Ry,,) is an increasing sequence of finite subequivalence
relations of Rg, and by definition of H,,, Rg, and | J Ry, differ only on a null set. O
neN

4.1.3 Invariant random subgroups

Let o : T~ (X, ) be a measure preserving action of the countable group I'. To this action
we can associate a probability measure on the Polish space of subgroups of I'.

For T' a countable group, {0,1}! is a Polish space homeomorphic to the Cantor space.
We let Sg(T") be the closed subset of {0,1}! consisting of the subgroups of I'. Then Sg(T')
is of course a Polish space.

We have a natural map Stab® : X — Sg(T") defined by = — Stab®(z) = {ge T : g*(z) =
x} and that gives us a probability measure Stabgu € PB(Sg(T")) that we call the Invariant
Random Subgroup (IRS in short) of o and denote by 6,. Moreover, I' acts on Sg(I') by

conjugation and the well known formula Stab®(gx) = gStab®(z)g~!

implies that the map
Stab® is equivariant. Therefore, 6, is a I'-invariant measure on Sg(I'). In general, we define
g g

an IRS of T to be a probability measure on Sg¢(I") invariant for conjugacy.

For a finitely generated group, an IRS and a random colored graph are the same things

in the way precised below :

Lemma 4.9. If (', S) is a finitely generated group, then there is a injective Borel map
¥ Sgl) — %;@(S) such that for all pmp action a : T —~ (X, ), ¥ is a measure preserving
bijection (Sg(T'),0,) — (%;@(S),/LZ(S)).

Proof. Let ¥ : Sg(T') — E?fz(s) that associates to A < I' the Cayley graph of I'/A with
generators {3* : s € S} (these are classes in the quotient), colored on edges by the map

(z,y) — {se€ S :5% =y}
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4.1 Measure preserving actions and Graphings

(9)

Let a: ' —~ (X, 1) be a pmp action. By definition of G,, the measure Méi is concen-
trated on the image of ¥, thus we only need to prove that ¥ is injective to conclude that ¥
is the desired injection.

We construct a left inverse for ¥. For (G, 0) € %?(S), define G’ as follows. For v € V(G),
add a loop at v if 3s € S such that no edge starting at v contains s in its color, and color the
loop by the set of such s. Now in (G’,0), for any s € S and v € V(G’), there is a unique edge
starting at v that contains s in its color, so there is a bijection f between the set of walks in
G’ and the free group with |S| generators Fs. Consider the unique morphism ¢ : Fg — T’
extending cg — s where Fg is generated by the cg for s € S. Then let CW be the set of

closed walks in G’. Note that the map G — p o f(CW) is a left inverse for U. O

If follows from the latter Lemma that two actions of (I',.S) have the same IRS if and
only if their respective graphings have same random 4?(S)-colored graph.

An immediate consequence is that for «, 8 pmp actions of (I, S), if 6, = 6g, then G,
and Gg have same random graphs, seen as uncolored graphings. Indeed, if 7 is the map
%*‘0](5) — ¥, associating to a & (S)-colored graph its underlying uncolored graph, then the
local statistics of a colored graphing G can be obtained from the random colored graph
associated to G simply by the equality pug = W*ug@ () It follows that for an IRS 0, by
Theorem 3.11, either every pmp action of I' with IRS 6 are hyperfinite or none is.

Moreover, it is proved in [TD15] that every IRS is the IRS associated to a pmp action.

These properties motivate us to call an IRS on a finitely generated group hyperfinite
if actions having this IRS are hyperfinite.

Furthermore, we can extend this definition to any countable group I' and any 6 IRS on T"
: For TV a finitely generated subgroup, let 7 : Sg(T') — Sg(I") defined by 7/ (A) = AnT’
and let 6 = 7, 0. It is then clear that 6/ is an IRS on I such that the restriction to I
of any pmp action « of I' which has IRS 6 has IRS 6p.. Therefore either 61 is hyperfinite
for every I < T finitely generated, and then by Proposition 4.5 every I'-pmp action is
hyperfinite, or there is a finitely generated IV < I" such that fp/ is not hyperfinite and in this

case for any pmp a: I' —~ (X, ), R C R, is a non-hyperfinite subequivalence relation,

arpz

witnessing the non-hyperfiniteness of R, and therefore of a.

Definition 4.10. Let I" be a countable group. An IRS 6 on T is called hyperfinite if one

of the two equivalent following statements is satisfied :
1. There exists a hyperfinite pmp action which has IRS 6.

2. Every pmp action which has IRS € is hyperfinite.

Definition 4.11. Let o : T' —~ (X,u) and 8 : ' —~ (Y,v). An action factor map r :
Y — X is a measure preserving almost surjective map such that V*y e Y ¥y e T, n(v%y) =
Y (y).

We say that a is a factor of 8 and we write o = f if there exists an action factor map
m:Y — X.

Lemma 4.12. Let a, 8 be hyperfinite actions of a finitely generated group (I', S) on standard
probability spaces (X, u) and (Y,v) such that o E 3 and 0, = 03. Then we have 9, € Y3
C
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4.2 Approximate conjugacy for pmp actions with a given hyperfinite IRS

as P(S)-colored graphings. Precisely, every action factor map is a colored graphing factor

map.

Proof. Let m be an action factor map ¥ — X, as 7 is I'-invariant, we have
v*y Stab”(y) < Stab®(m(y)). Suppose now that 3*y Stab®(y) < Stab®(m(y)). By count-
ability of T, 3y € T' 3*y, v € Stab®(m(y))\Stab® (y), thus

05(N,) = Stabfv(N,)
< (Stab® o m)5u(N,)
= Stab{(m)(N,)
= Stabiu(N,)
= 0a(N,)

A contradiction. This proves that V*y Stab” (y) = Stab®(n(y)). Applying the application
¥ from Lemma 4.9 to Stab”(y) = Stab®(m(y)) we see that the components of y and 7(y)

respectively in Gg and G, are colored isomorphic. O

Now we can state the generalization of Rokhlin Lemma that we prove in this paper :

Theorem 4.13 (Approximate conjugacy for pmp actions with a given hyperfinite IRS). Let
T be a countable group and 0 a hyperfinite IRS on I'. Two actions a : T' —~ (X, ) and
B:T —~ (Y,v) of T such that 0, = 05 = 0 are approzimately conjugated, meaning that

YY1, ..., €' Ve > 0 there is a measure preserving bijection p : X — Y such that
p{ze X :Vi<n poryi(a) =7 op(x)}) >1—¢

Ornstein and Weiss showed that any pmp action of an amenable group is hyperfinite. As
being a free action means having IRS equal to d;}, the result we present here is indeed a

generalization of Rokhlin Lemma.

We can reformulate the latter theorem as follows : The uniform metric d,(f,g) =
p({x e X : fr # gr}) on Aut(X, ) makes it a Polish space, and therefore Aut(X, )" is
a Polish space for the product topology. For any enumeration I' = {~,, : n € N}, we get
a complete metric &, (a, 8) = O 52 "dyu(72,752) compatible with the product topology
on Aut(X, u)'. Now we can see the space of pmp actions of I' on (X, ) with IRS 6 as a
subspace of Aut(X, u)'' and we call the induced topology on this space the uniform topology.

Then it becomes clear that the latter theorem is equivalent to

Theorem 4.14 (Approximate conjugacy for pmp actions with a given hyperfinite IRS
reformulated). If 6 is hyperfinite, then every orbit of the conjugacy relation on the space of

pmp actions of T' on (X, u) with IRS 0 is dense for the uniform topology.

4.2 Approximate conjugacy for pmp actions with a given hyperfi-
nite IRS

We begin with the case where one of the actions is a factor of the other. In fact we prove a

stronger version involving the stability of Borel parameters.
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4.2 Approximate conjugacy for pmp actions with a given hyperfinite IRS

Definition 4.15. Let Fj, F» be two finite sets. A (F}, Fy)-bicolored graphing on a
standard probability space (X, u) is a graphing G(X, 1) endowed with two Borel maps ¢g :
E(G) — Fy and ¢g : X — F». We call ¢)g(x) the vertex-color of x and pg(z,y) the edge-color
of (z,y).

Definition 4.16. Let G(X, u) and G'(Y,v) be two (Fy, Fy)-bicolored graphings. A bicol-
ored graphing factor map 7 : Y — X is a Fj-colored graphing factor map such that
Yg o = g

We say that G is a bicolored factor of G’ and we write G 2; G’ if there is a bicolored

factor map 7 : Y — X.

Theorem 4.17 (Approximate parameterized conjugacy for factor actions). Let (X, u) and
(Y,v) be standard probability spaces and Ay, ..., A € X, By,...,Bx €Y be Borel subsets.
Let T be a countable group, 0 be a hyperfinite IRS on T and o : T' ~ (X, p), B:T —~ (Y,v)
be pmp actions of I' with IRS 6 and such that o = B for an action factor map w: Y — X
such that Vi < k, n=Y(A;) = B;. Then for ¢ > 0 and v1,...,v, € I, there exists a pmp
bijection p: X — Y such that Vi < k, p(4;) = B; and

pfre X :Vi<n porf(z) =7l opa)}) >1-¢

Proof. We begin the proof with a claim about graphings.

Claim 4.17.1. Let G(X, ) and G'(Y,v) be hyperfinite (Fy, F3)-bicolored graphings
such that G(X, ) C G'(Y,v). Then for any € > 0 there exists a pmp bijection p : X —
Y such that g = ¢g o p and

i ( Ur ' (B@) ne5'(e) & (B©G) n w;l(C))) <e

ceFy

Proof. Let m be a bicolored graphing factor map ¥ — X. First take a Borel set
Z < E(G) of measure less than £ and M € N such that the graphing # = G\Z has
components of size at most M. Let Z' = 7=%(Z) and H' = G'\Z', by definition of 7

we know that H’ has components of size at most M.

Consider the set 4; be the set of connected Fj-colored graphs of size at most M. We

consider the two partitions X = | | C¥ and Y = || C¥', where C¥ is defined like
Se“ Se¥m
in Section 3. to be the set of vertices of H whose component are (F;-colored) isomorphic

to S. Since 7 induces F}- colored graph isomorphisms, we have C’gf/ =7 YCH).

In order to define p, it suffices to define a measure preserving bijection pg : C¥ — C¥
preserving colored graph structures for each S € ¢),.

Indeed, the union of all these bijections would yield a measure preserving bijection

p: X — Y preserving colors such that
Vo € X\Vine(2), BY(z) = Bl{(z) ~ B (p(x)) = BY (p(x)), hence
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4.2 Approximate conjugacy for pmp actions with a given hyperfinite IRS

Vine( U (p7'E(G) nwg!) A (B(G)) € Vine(Z), s0

C€F1

1 ( U (' B@) nugh) & (E(G>)> < dp(Vine(2)) < dpp(Z) <

ceFy

Take S € %y and let us define pg. First we define a partition of C¥ into Borel
transversals (7.,),ev(s) such that the elements of T;, occupy the same place in their
component for H that w in S. Precisely, choose wy € S. We define the Borel transversals
T, by induction.

Suppose that the T, are already defined for w’ € R where R is a proper subset of V'(S).
Take w € V(S)\R incident to R and let T, = {reCH: ([x]y,2) ~r (S,w)}. Here ~p
means isomorphic over R, that is there exists an isomorphism f : ([x]y,2) — (S,w) of
colored rooted graphs such that Vw' € R, f([z]y N T.) = {w'}. Then let

n, = |[{w €8 :(S,w) ~r (S,w)}|. Since all T,, must have same measure, we must
choose T, to be a subset of f; of measure %j}) In fact it suffices to take any such
set as T,,. Then we let R’ = R u {w} and we iterate the construction.

Again by definition of 7, the family (W*I(Tw))wev(s) is a partition of C;{' into Borel
transversals such that the elements of 7=1(7,,) occupy the same place in their compo-
nent for H’ that w in S. We may now define pg :

— We start by taking a measure preserving bijection p° : T,,, — 7 YT,

— Then for every w € S, there is a unique way of extending p¢° to T, while respecting
the graph structure of S. Indeed, take € T, there is a unique zq € [z]y N To,
and we want to define p¢(z) € [p$° (o)) N 7 (T.,) but again this intersection
is a singleton. Define pg : Cfg{ — C’Zf to be this unique extension of pg° satisfying
the condition above.

As 7 is a colored graphing factor map, it is clear that pg is a measure preserving
bijection such that YV € O;t ps induces an isomorphism of colored graphs between

[7]n and [ps (@)l
||

We now want to apply the Claim to suitable graphings to conclude. Let
S ={v, Y1 eyt and T := (S) be the subgroup of T' generated by S. Let us
denote the respective restrictions of a and 8 to (I, S) by o and 8 and finally consider the
graphings G, and Gg .

For the spaces of colors, we choose Fy = Z(S) and Fy = Z({1,...,k}). The way we
color edges has already been explained, for vertices, simply color a vertex x € X by
Yg,(r) ={i<k:xze A} andyeY by ¥g,(y) ={i < k:ye Bi}.

First, G and Gg are indeed (£(5), Z({1,..., k})-bicolored graphings, and are hyper-
finite since o’ and 3’ are hyperfinite actions of a finitely generated group.

The next step is to prove that m considered in the statement of the theorem is a bicolored
factor map for the (Z(S), Z({1,...,k})-bicolored graphings G, and Ga.

e First, 7 is indeed a pmp almost surjective map ¥ — X.
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4.2 Approximate conjugacy for pmp actions with a given hyperfinite IRS

e Then for y € Y, we have
Vg, (m(y)) ={i<k:m(y) e A} ={i <k:ye Bi} =g, (y)

e Finally, by Lemma 4.12, 7 is furthermore a colored graphing factor map between the
P (S)-colored graphings G, and Ggr.

Applying the Claim gives us a pmp bijection p : X — Y such that ¢g , = 1/)%/ o p and

pe( U (BGw nig,) A (pflE(gﬁ,) m/)gﬁ,)) < e. But then for 1 <i <k, p(4;) = Bi,
ce2(S)
and by definitions of G,/ and Gg' the set {x € X : 3y e S poy*(x) # 77 o p(x)} is contained
in Vine( U (E(go/ N 'l/)ga,) A (pflE(gg) 8 wgﬁ,)) S0 its measure is less than e. O
ceP(S)

To conclude the proof of Theorem 4.13, we will use the transitivity of the approximate
conjugacy relation and show that for any two pmp actions « : I’ —~ (X, ) and 8: T —~ (Y, v)
of T' such that 6, = 03, there is a third pmp action ¢ : I' ~ (Z,n) of IRS 6 such that both
« and B are factors of (.

Proposition 4.18 (Disintegration theorem, Admitted). Let X,Y be Radon spaces, u €
BY) and 7 : Y — X a Borel map. We let v = wup. Then there is a v-a.e. uniquely
determined family of Borel probability measures (jiz)zex € B(Y)X such that

1. For each Borel B Y, the map x — p,(B) is Borel measurable.

2. Forv-a.e. v € X, ju, is concentrated on the ﬁber ﬂ’l(x).

3. For every Borel map f:Y — [0,00], §,. f(y) =5 5 fy) dua(y) dv(z).
We then write 1 = §y po dv.

With the help of disintegration, we define the relative independent joining of two ergodic
systems over a common factor.
Definition 4.19. Let a : I' —~ (X,pu) and g : ' —~ (X', /) be pmp actions, and let
¢€:T —~ (Y,v) be a common factor of @ and S for respective action factor maps 7 : X —» Y
and 7’ : X' - Y.

Since standard Borel spaces are in particular Radon spaces, we can disintegrate p and
p with respect to v using the Borel maps 7 and 7’ to get p = §y, py, dv and p' = §,, i, dv.

Consider Z := X x Y and 7 € P(Z) defined by n = {,, p, x p;, dv.

We call the independent joining of « and § over £ and we write o x § the pmp

3

action a x f: '~ (Z,n).

The independent joining of o and S over £ is a factor of both o and § respectively for
the projection on the first and second coordinates p; and ps, which moreover makes the

following diagram commute, up to a null set :

/\
\/
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4.2 Approximate conjugacy for pmp actions with a given hyperfinite IRS

Lemma 4.20. Let I' be a countable group and 6 be an IRS onT'. Let a: T' ~ (X, ), 8 :
' ~ (Y,v) be pmp actions of IRS 0. Then there is a standard probability space (Z,n) and a
pmp ¢ : T —~ (Z,n) of IRS 0 such that both o and 8 are factors of .

Proof. Let 0 be an IRS on T, we write @ for the measure preserving action I' ~ (Sg(T), 6).
Let « : T~ (X,pu), 8:T —~ (Y,v) be pmp actions of IRS 6, then the maps Stab® : X —
Sg(T') and Stab” : Y — Sg(I') are action factor maps.

Consider « x 8 be the independent joining of o and 8 over 6. It only remains to prove
that its IRS is g.

Claim 4.20.1. Let ¢ : T' —~ (Z,n) be a joining of a and §, that is a pmp action such
that both a and 3 are factors of (. We have 6, = 6 if and only if, up to a null set, the

e
o B
NN 0 s

Proof. All equalities in this proof are up to a null set.

following diagram commutes :

Suppose the diagram commutes. For v € I, we have

V¥(z,y), v =z < yy =y < vy(z,y) = (z,y). It follows that

V*(z,7), Stab®(z,y) = Stab®(z) or in other words, Stab® = Stab® o p;. Therefore
0 = Stab$n = Stab? (p1,7m) = Stab¥u = 0, = 6.

Conversely, suppose 6 = 6. Then p; and ps are action factor maps between two
actions with same IRS, thus repeating the proof of Lemma 4.12, we get
Stab® o p; = Stab® = Stab” o p.. [ |

We conclude simply by definition of the independent joining over a common factor that ax g3
0

is a suitable joining for the Lemma. O
The proof of the big theorem easily follows :

Proof : Approximate conjugacy for pmp actions with a given hyperfinite IRS.
Let : T —~ (X, p) and 8 : T —~ (Y, v) two actions of I having IRS 6 and consider the joining
¢:T' —~ (Z,n) from Lemma 4.20.

Applying twice Theorem 4.17 with no Borel parameters we get two pmp bijections p :
X — Z and p' : Y — Z such that

p{we X :Vi<n, porf(e) =7/ o pla)}) > 1- =
and
Y Vi< By) = ~2 )>1-— €
v({yeY :Vi<n, poryi(y) = cpy)}) >1-3
Thus, p'~'op: X — Y witnesses the e-approximate conjugacy of o and f. O
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5 Model theory for hyperfinite actions

5 Model theory for hyperfinite actions

5.1 Probability algebras

The reference for countinuous model theory is [YBHUO08]. We assume everything that is in

this article and we will use the same notations.
Definition 5.1. A probability algebra is a Boolean algebra (A,u,n,“,0,1,&,A) en-
dowed with an application u : A — [0, 1] satisfying the following :
L p(l) =1.
2. VA, Be A, u(An B)=0= u(Au B) = u(A) + u(B).
3. The application d,,(A, B) := u(A n B) is a complete metric.
Definition 5.2. An element A € A is an atom if YBe A, B< A= B e {0,4}. A

probability algebra is atomless if it has no atom.

Proposition 5.3 (Admitted). If a probability algebra A is atomless, then
VAe AVre[0,u(A)] 3B <C A, u(B) =

Proposition 5.4 (Admitted,[Fre02]). Let 2 be any probability algebra. Then there exists a
probability space (X, p) such that 2 is isomorphic to MAlg(X, n). Moreover if 2 is separable
then (X, u) can be taken to be a standard probability space.

Take f : (X,u) — (Y,v) a measure preserving map then the map f: MAlg(Y,v) —
MAlg(X,v) sending [A], to [f~!(A)], is a probability algebra morphism. Moreover, if f is

a bijection, then f is an isomorphism.

5.2 Model theory of atomless probability algebras

We can axiomatize the theory APA of atomless probability algebras in the signature
L={u,n,,0,1} (€ and A are defined as usual) by :
e The axioms of Boolean algebras :
—sup,, dizvy,yur)=0
—sup,, dxzny,ynz)=0
zu0,2)=0

— sup,,

TUX =0

d(

— sup, d(z n 1, a?) 0
— sup, d(
d(

— sup, d(x nz¢0) =0
(yfw%(xuy)ﬂ(xw)):

— sup,, ., d(z v 0
(yuz)(@ny) ul@nz) =0

(
— sup,, . d(z n
e The axioms for the measure :

—p(1) =1

— sup,,, p(@ny)=p(z) =0

— sup,,, p(@) = p@uy) =0

— sup,,, |(u(@) — plz ny)) = (ulz v y) —py) =0
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5.3 Morphisms and liftings

e The link between the metric d and the measure : sup, , [d(z,y) — p(x Ay)| =0
o The lack of atoms : sup,, inf, |u(zny) —p(zny®)| =0

For (X, i) a probability space, we let MAlg(X, ) be the boolean algebra of Borel sub-
sets of X quotiented by the o-ideal of null sets. For A € X Borel we denote its class in
MAlg(X, ) by [A],. We define an application p : MAlg(X, p) — [0,1] by u([A],) = w(A4).
It is classic that MAlg(X, p) endowed with p is a probability algebra.

Moreover, in the case where (X, ) is a standard probability space then MAlg(X, i) is
atomless and separable for the topology induced by d,,.

Proposition 5.5. The theory APA is separably categorical and therefore complete.

Proof. Take A, B separable probability algebras. We may suppose that there are standard
probability spaces (X, u) and (Y,v) such that A = MAlg(X, u) and B = MAlg(Y,v). Now
by uniqueness of the standard probability space there exists a measure preserving Borel
bijection f: X — Y, and that induces an isomorphism f: B — A. O

Finally we give a characterization of types in the theory APA :

For A a probability algebra, we can define a Hilbert space L?(A) in which A embeds.
This construction can be done in many different ways (see [Fre02]) and in the end if A =
MAlg(X, i), then the linear map L?(A) — L?(X, u) sending A to 14 is an isometry.

Definition 5.6. Let A be a probability algebra and B a measure subalgebra of 4. Then
the space L?(B) is a closed vector subspace of the Hilbert space L?(A), we denote by Pg the
orthogonal projection on L?(B) and we call it the conditional expectancy with respect
to B. Particularly, for A € A, A can be seen as an element of L?(A) and we call P5(A) the
conditional probability of A with respect to B.

By definition, the conditional probability of A with respect to B is the only B-measurable
function such that for any B-measurable function f, we have {Pg(A).f = {1.4.f.

Proposition 5.7 (Admitted, [BHO4]). Let M = APA, a,b be n-uples of elements of M
and

C < M. Then tp(a/C) = tp(b/C) if and only if for every map o : {1,...,n} — {1,c} we
have Py (o) ( N a;-f(i)> = Pyarey [ N b;’(i)>, where x' means x.

1<isn I<isn

5.3 Morphisms and liftings

In general, given a morphism ¢ : MAlg(Y,v) — MAIlg(X, u) there is no way to get a point
to point map f : X — Y such that f = ¢. However, with standard probability spaces, we
can do such constructions :

Proposition 5.8 (Admitted,[Fre02]). Let (X, p) and (Y,v) be standard probability spaces.

1. Let ¢ be a morphism of probability algebras MAlg(Y,v) — MAlg(X, ). Then there is
a lifting of v, that is a measure preserving map f: X — Y such that ¢ = f

2. Let ¢ be an isomorphism of probability algebras MAlg(Y,v) — MAIlg(X, u). Then there
s a lifting of @ which is a bijection f: X — Y.
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5.4 The theory 2y

3. Let T be a countable group acting by automorphisms on MAlg(X, pn) by an action «.
Then there is a lifting of «, that is an action 8 : ' —~ X acting by measure preserving

transformations such that ¥y e I' v¢ = 'fyﬁ

5.4 The theory 2y

Until now, we studied actions of any countable group. For the sake of simplicity, we now
restrict to Fy, actions, where Fi, denotes the countably generated free group. It is clear that
any action of a countable group can be represented as a F,-action.

We now expand the signature £ with a countable set of function symbols {y : v € Fi}.
We call this new signature L. We begin by considering the theory g, consisting of the

following axioms :
e The axioms of APA.

e For v € Fy, the axioms expressing that v is a morphism :

— sup,, d(y(ruy),yruyy) =0
— sup,, d(y(zrny),yrny) =0
sup, |p(yz) — p(z)| =0

— sup,, inf, d(z,yy) =0

e The axioms expressing that F,, acts on the probability algebra :
— sup, d(ex,z) =0
— For 1,72 € Fyy the axiom sup,, d(y1(722),7172%) =0

By Proposition 5.8 any separable model of 2(y can be seen as the probability algebra
endowed with the action associated with a measure preserving action « : Fy, —~ X where
(X, u) is a standard probability space. We denote the model of A, induced by such an
action o by M,. Without loss of generality, from now on, whenever taking a separable
model of Ap_, we will take an action o and suppose our model is M,,.

For f any measure preserving bijection (X,u) — (X, pu), where (X, ) is a standard
probability space. We call the support of f and we denote by Supp f the set {x € X : fa #

Lemma 5.9. There is a A € MAlg(X, ) such that [Supp fl, = fT'AU AU fA and
An fA=0.

Proof. MAlg(X, u) is a probability algebra and therefore is complete as a Boolean algebra
so it has a maximal element A disjoint from its image by f.
Consider B = f2A\(f~*Au A u fA). We have

(AuB)n f(Au B) (AnfA) V(AN fB)u(Bn fA)u (Bn fB)
00U (A\A) U (fASA) U (FPA\f2A)

0

N

Thus A U B is disjoint from its image. By maximality of A, we then have B € A, but by
definition B n A = 0, so B = 0, or in other words, f2(A) < f~'A U A U fA. Therefore by
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5.4 The theory 2y

a simple induction, f(f*Au AU fA) = f71AU AU fA, and thus the restriction of f to
[Supp fl,\(f""A U AU fA) is an endomorphism of MAIg(X, (1) [supp f1,\(f~1 AvALfA)-

Claim 5.9.1. Let g be a measure preserving transformation of a standard probability
space (Y, v) such that v(Supp g) > 0, then there exists a nonnull Borel C € Y disjoint

from its image by g.

Proof. Let (C,, : n € N) be a countable family of Borel subsets of Y separating the
points. For n € N, let C/, = C,,\g(C,). For y € Supp g, there is n such that y € C,
and g7!(y) ¢ C,, so y € C!, and therefore p( | J Cl,) = wu(Supp g) > 0. Take a C/, of

neN
positive measure as the desired C. |

By the Claim it is clear that if Supp f\(f~*Au AU fA) # 0 then 3C € MAlg(X, 11) disjoint
from its image and such that 0 # C < [Supp f],\(f7'A U A U fA), contradicting the
maximality of A. We conclude that [Supp f], S fTTAU AU fA.

Conversely, if A is disjoint from its image by f, then f~'A and fA have the same property
and thus f7'AU AU fA < [Supp f].. O

This encourages the following definition.

Definition 5.10. Let (<7, u) be a probability algebra, we can generalize the notion of
support to any pmp isomorphism f of 7 (and not only those coming from a pmp bijection
of a probability space) by letting Supp f = sup {f TAUVAU fA: Ae &, An fA = 0}.
The previous Lemma assures that if f is actually of the form p for p a pmp bijection of a

probability space, we have Supp f = [Supp p],.

Now we can prove that the IRS of a pmp action on a probability algebra is determined

by the theory of this action seen as a model of Ap, .

Definition 5.11. For v € Fi, we let ¢ (z) denote the term v~ ! (z\yz) U (2\yz) U y(z\1z).

It is clear from this definition that for M = g, , Supp v = sup{t,(A4) : Ae M}.

Lemma 5.12. Let M = UAp, and v € Fy, then the support of v is definable without

parameters in the theory Ar, .

Proof. We need to prove that the distance to Supp < is a definable formula. By definition
of the distance, we have Vo € M, d(x,Supp v) = pu(z\Supp 7) + u(Supp v\z).

On the one hand, p(z\Supp v) = inf, u(z\t,(y)) so the first part is definable.

On the other hand, y(Supp 7\z) = sup, p(t,(y)\z) and therefore the second part is
definable as well. O

Theorem 5.13. Let M,, Mg be two elementary equivalent separable models of Ar, , then
0, = 03.

Proof. As 6, and 0g are measures on Sg(Fy,), they are determined by their values on the
sets Npg ={A < Fpp,: F S A,Gn A=} where F and G are finite.
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5.5 Completeness and model completeness

Note that 0, (Np,g) = p( () Supp vM*) and 05(NF,z) = p( () Supp v*#) and by Lemma
'ye 'yGF
5.12, pu( () Supp 7) is a definable sentence, thus by elementary equivalence, for every finite
yeF

F < Fy,, we have 0,(Np,g) = 03(Nr,&).
Now for F,G finite subsets of F, write Np.g = Nr,g\ |J Nrugy),g- By the inclusion
~eG

exclusion principle, we then get

|G|

Oa(Nea) = 0a(Neg)+ D (-1)" > ba(Nrosg)
i=1 (JSG - |J|=i}

1G]

= eﬁ(NF,®)+Z(*1)i Z 03(NruJg)
i=1 (JSG : |J]=3)

= 03(Nrg)

For 6 an IRS, let 2y be the Ly -theory consisting of :
e The axioms of /Ap, .

e For I € Fy, finite, the axiom supy, .epy p( () () = 0(NF,g).
~eEF

Then the theory 2ly represents measure preserving actions of Fi, of IRS 6.

5.5 Completeness and model completeness

Theorem 5.14. Let 6 be a hyperfinite IRS on Fy,, then the theory 2y is complete.

Proof. It suffices to show that any two separable models are elementary equivalent by the
Lowenheim-Skolem theorem.

Let My, Mg be separable models of 2y, where « acts on (X, u) and S on (Y, v). We will
prove by induction on formulas that for any Eoc formula ¢(z) and € > 0, there is a pmp

bijection p: Y — X such that Va < M,, |ap oMo (P }

Step 1 : We start with atomic formulas. Since the distance can be expressed with the
help of the measure symbol p, @ is the only predicate in the language and therefore the
atomic formulas are of the form () := p(t(n1Z,...,7.), where t(u) is a L-term.

In continuous logic, all functions are uniformly continuous and thus so are the terms,
so we can choose 6 > 0 such that in any two tuples @ and @ in Mg, if d,(4,v) < § then
d, (P15 (), £419 (3)) < e.

We can now apply our big theorem, Theorem 4.13, to get a pmp bijection p : ¥ — X
such that

v({{yeY :Vi<n pori(y) =] op(y)}) > 136
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5.5 Completeness and model completeness

In terms in probability algebra, we get Vi € {1,...,n} Va € M,, dl,(ﬁ'yfa, & pa) so for any

tuple a € M, we have

= |ptM(fa, vz — v (v
Y1 a‘v cee 7736’)) - V(tMﬁ (71615517 cee 77£ﬁa‘))}

= " (pra,. pea) - v (0 i)

N
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~

=
@
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)
=0
“Q
<
30
3o
a
\.P#
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)
=
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e
?
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Step 2 : The case of connectives is trivial : simply use uniform continuity.

Step 3 : For quantifiers, let us for example consider the case of a formula of the form
inf, p(z,7), knowing the result for p(z, 7).

Take a pmp bijection p : ¥ — X such that ¥(a,b) = Ma, | (a,b) — ™5 (pa, pb)| < e.
Since p is surjective, we also have Yb = M,, |inf, (z,b)™> — inf, o(x,pb)M#| < e. Hence

the conclusion.

But now if ¢ is a L,-sentence, what we just proved shows that Ve > 0, ’goMa — <pMB‘ <e.

It follows that @M« = ™5 and therefore 2y is complete. O

For model completeness, we need a version of the latter proof with parameters.

Theorem 5.15. Let 0 be a hyperfinite IRS on Fy,, then the theory Ay is model complete.

Proof. Tt suffices to show that any inclusion of two separable models is elementary. Indeed,
suppose this result and take any M € N = 2y, ¢(Z) a Lo-formula and @ € M finite. By
Lowenheim-Skolem theorem, take M’ < M separable containing A. Again by Lowenheim-
Skolem theorem, take N’ < N separable and containing the separable structure M’. Using

the hypothesis, M’ < N’ so we finally get

From there, the proof is similar to the one of completeness, except that we use Theorem

4.17 to stabilize Borel parameters.

Claim 5.15.1. For M, and Mg two separable models of 2y, M, S Mg if and only if

aE .

Proof. Suppose a & $ and let 7 : Y — X be a corresponding action factor map. Then
7 M, — Mg is an embedding.

Conversely, suppose we have an embedding 7 : M, — Mpg. By Proposition 5.8 we can
take a lifting 7 of i such that Vy € F.y, 7% om = mo~® and this lifting is then an action

factor map between o and /3 |
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5.6 Elimination of quantifiers

To complete the proof, we consider two models M, < Mgy of 2y and we proceed by
induction on formulas, showing that for any Lo, formula ¢(Z,a), where a < M, and € > 0,
there is a pmp bijection p : Y — X such that Vb < M, }(pMa (b,a) — s (pb, &)} < e. The
cases of connectives and quantifiers are exactly the same so we focus on atomic formulas :

Let a € M, and o(z,a) := p(t(117, ..., %%, N4, ..., @) be an atomic formula, where
t(Z) is a L-term. Let § > 0 be such that in any two tuples @ and @ in Mg, if d,(4,7) < §
then d, (t™# (u),tM5(v)) < e. Finally, let A be a tuple of Borel representatives of elements
of @ in (X, ) and consider the action factor map 7 given by the Claim. Let B = 7~1(4),
so that B is a tuple of Borel representatives of elements of @ in (Y, v).

Thanks to the Claim, we can now apply Theorem 4.17 to get a pmp bijection p: Y — X
such that p(A) = B and

v({yeY :Vi<n pory/(y) =1 op(y)}) >1-36

In terms in probability algebra, we get pa = a and Vi € {1,...,n} Vbe My, d,(pv{b,~; pb)
so for any tuple b € M, we have

(b, @)™ — o(pb, @)M‘3|
p(tM (D, 9eb, AR, ya)) — v(EME (V) Db, . A Pb Y, 775@))‘

= @t (5, e tas ) = v (b, b A, )|

v(tMe (pyb, ... pyeb, prfa ---ﬁvﬁd))—V(tM‘*(Vfﬁ@,---,vﬁﬁ@,vfﬁ&,--~mfﬁﬁ))‘

N

d, (tMB (PYED, .. Yeb, poia, ., pyea), £ (5 pb, . . v pb, Y P . ,vﬁﬁd))

< €

Now if (@) is a Ly-sentence with parameters @, what we just proved shows that
Ve >0, [pM=(a) — oM (a)| < e. It follows that ™= (a = ©™?#(a) and therefore 2y is model
complete. O

5.6 Elimination of quantifiers

Proposition 5.16 (Admitted,[YBHUO8]). Let T be a countable theory, then T admits quan-
tifier

elimination if and only if for any separable M, N =T, any substructure A € M and any em-
bedding f : A — N, there is an elementary extension N’ of N and an embedding f M — N’
extending f.

Definition 5.17. We say that a theory T admits amalgamation if for any M7, My =T and
any common substructure A, there is N =T and embeddings M; <— N (i = 1,2) such that

the following diagram commutes :

/\
\/
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5.6 Elimination of quantifiers

Lemma 5.18. Let T be a theory. Then T admits quantifier elimination if and only if it

admits amalgamation and is model complete.

Proof. Suppose that T admits quantifier elimination. Let M;, My = T with a common
substructure A, applying Proposition 5.16 where f is the inclusion A — M, we get N as
required.

Now let M < N be two models of T. By quantifier elimination, we only need to prove
that M = p(a) « N = ¢(a) for atomic formulas ¢ and finite tuples @ of parameters in M.

But this is trivial by the definition of inclusion for models.

Conversely, suppose T admits amalgamation and is model complete and let M, N |= T,
A © M be a substructure, and f : A — N. By considering a monster model, we may
suppose that A € N and f is the identity. Then by amalgamation there is a model N’ =T

and embeddings ¢, 1 such that the following diagram commutes :

MVN/VN
A

Again we may suppose that N € N’ and v is the identity, thus by model completeness we
have N < N’. Furthermore, the diagram now exactly states that ¢ extends the inclusion
A< N. O

In order to prove that our theories eliminate quantifiers, it only remains to prove that
they have amalgamation. However, the following example shows that it is not the case in

general.

Proposition 5.19. As we already saw, considering Fy, actions allows us to study any I’
action as well, when I' is countable. Fix a surjective morphism Fy, — I'. For 6 an IRS on
T, denote by 0’ the IRS on F., such that actions of T' of IRS 6 are represented by actions of
Fy, of IRS 0. We write Ar g for Ay .

Let 0 = %5{6} + %6F be an IRS on I', then /Ar ¢ does not have quantifier elimination.

Proof. Take any v € T'\{e}. We already saw in Lemma 5.12 that the support of v was

definable in the theory %Ay. However, it is not definable with a quantifier free formula.

Indeed, suppose p(z) is a quantifier free formula equivalent to y(x N Supp ) := sup, pu(zn
W\ v r\) v (\aw)) -

Let 1 be a free pmp action on ([0, 1], A) and k2 be the trivial action on ([0, 1], \). Define

o a:T ~ (X =[0,1] x {1,2,3,4}, 0 = IA x &1 + 1A x 82 + 1A x 85 + 1A x &,) that acts

like k1 on [0, 1] x {1} and [0,1] x {2} and acts like 2 on [0,1] x {3} and [0, 1] x {4}.

o B:D ~ (X =[0,1] x {1,2,3,4}, p = IA x 01 + 32X x 63 + 1A x §3 + 2 x 64) that acts
like 1 on [0,1] x {1} and [0, 1] x {3} and acts like 2 on [0, 1] x {2} and [0, 1] x {4}.
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5.6 Elimination of quantifiers

We have 0, = 03 = 0.

Let M be the common substructure {4, B} of M, and Mg, where A = [[0,1] x {1,2}] ,
B =[[0,1] x {3,4}],-

As ¢(z) is quantifier free, we have pMa(A) = pM(A) = M5 (A), but in M,,
A~ Supp v = [[0,1] x {1,2}] , and thus My = pu(A N Supp 7) = 1
A~ Supp v = [[0,1] x {1}] , and thus My = p(A N Supp 7) = 1. A contradiction. O

whereas in Mg,

In the case where I' is amenable, this is an example of theory of the form %Ay which is

model complete but does not eliminate quantifiers.

In the other hand, we still have amalgamation for free actions of an amenable group I :

Proposition 5.20. If 0 is the Dirac measure d;¢y on I' an amenable group, then 2Ar g admits

amalgamation and thus has quantifier elimination.

Proof. Let M, Mg be two separable models of 2r s and A a common substructure. Then
«a and (3 are actions of T' of IRS 6 and the substructure A can be interpreted as an action &
of ' on a probability space, which is a common factor of o and .

Consider the relative independent joining ¢ of o and 8 over the common factor £. Since
a E (¢, the stabilizers in ¢ must be smaller than the ones in «, but these are always the
trivial group, hence ¢ is a free action of I', and thus M, is a suitable model of r g for

amalgamation over A. O

We just saw that there are theories of the form 2(y for 6 hyperfinite which admit quantifier

elimination and others that do not. The next question is thus :

For which 0 does the theory Ay admit quantifier elimination ¢ Is there a simple sufficient

condition on 0 ?

At the time, we do not have any satisfying answer, however, we propose a conjecture.
Indeed our counterexample in Proposition 5.19 highly relies on non-ergodicity of the IRS.

We recall the definition of ergodicity.

Definition 5.21. Let a : I' —~ (X, ) be an action of a group on a probability space. We
say that « is ergodic if every I-invariant (for «) measurable subset of X is either null or
connull.

For a given Borel action I' — X on a Polish space, we say that p € PB(X) is ergodic if

every I'-invariant measurable subset of X is either null or connull (for ).

For Invariant Random Subgroups, we consider the notion of ergodicity with respect to
the action T' —~ Sg(T") by conjugation. Thus %5{3} + %(51" is one of the simplest examples
of non-ergodic IRS. In the proof of Proposition 5.19 we choose actions which decompose
in a very specific way, and that could not be done with an ergodic IRS. Moreover, the
same proof can be adapted to the case of many non-ergodic IRS, namely to any IRS in the
proper convex hull of two IRS concentrated on two disjoint Borel subsets of Sg(T"). All these
remarks suggest that ergodicity play a role in the quantifier elimination of 2y. We therefore

also ask :

Does the theory Ay admit quantifier elimination if and only if 0 is ergodic ?
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5.7 Stability and Independence

5.7 Stability and Independence

5.7.1 Definable closure in 2y

Even though we do not know for which IRS 6 the theory 20y admits quantifier elimination,
another interesting question is to ask what we can add to the signature L, to expand it
into a simple signature in which the theories 2y always have quantifier elimination. One can
notice that in all this section, the supports of elements of the group play a big role. An idea
is then to add constants {S, : v € Fix} to the signature L, and to consider the theory 2,

consisting of :
e The axioms of Ry.
e For v e F,, the axioms :
— sup, d(S, nt,(x),ty(x)) = 0.
— p(Sy) = O(N,).
This theory expresses that for v € Fy,, the constant S, must be interpreted as [Supp v*],,

in the model M, as it contains the class of the support by the first axiom and has the same

measure by the second one.

Theorem 5.22. Let 6 be a hyperfinite IRS, then the theory A eliminates quantifiers in the
language Foy U {Sy 1 v € Fip}.

Proof. We use Lemma 5.18.
First, take M, < Mg two separable models and let us prove that M, < Mg. In order to
repeat the proof from Theorem 5.15 we only need to include atomic formulas in which the

constants S, appear. But for e > 0 and p: Y — X a pmp bijection such that

v({yeY :poy®(y) =" op(y)}) >1-¢

we have dl,(ﬁS,JYVIu,Sy ) < & so by uniform continuity of formulas we conclude as we did in
Theorem 5.15.

Now for amalgamation we will use the constants S,. Indeed, take M, and Mg two
separable models of ), and A a common substructure. We interpret A as a F, pmp action
¢ on a probability space which is a common factor of o and S for respective factor action
maps 7m; and .

Consider ¢ : F, —~ (X x Y,n) the relative independent joining of o and S over . By
definition, V*(z,y) € X x Y m(z) = m2(y), but moreover, since we added the constants S,
A being a common substructure implies in particular that 7r1_1(5’§‘) = S}« and 7r2_1(5;4) =
52" 1t follows that

Vy € Fy V¥(z,y) € X XY, € Supp v* < m(x) € Sj;‘ < ma(y) € S;l < y e Supp 7°

and so for all y € Fi,, up to a null set, Supp 7¢ = m; * (Supp 7*).
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5.7 Stability and Independence

Hence for any F' € F, finite, we get

0¢(Nr) n([)Supp 1)

yeF

= n(my () Supp 4*))

yeF

= 6,(Np)
= 0(Nr)

We conclude as in Theorem 5.13 using the inclusion exclusion principle that 0, = ¢ and thus

¢ is a witness that 2}, admits amalgamation. O

Corollary 5.23. Let M =2y and A < M, then the definable closure of A in M ‘s the o-
algebra generated by elements of the form vM (a) or v (Supp v3) fora e A and v1,72 € Fip.

Proof. First A < dcl™(A) and by Lemma 5.12, for v € Fi,, Supp ™ € dcl™ (A4). Moreover,
definable closure is stable by translates by elements of F,,, complements and countable
reunion, thus we get the first inclusion.

In the other way, since 2j, expands 2y, the definable closure of A in the theory 2y is
contained in the definable closure of A in the theory 2, which is contained in the o-algebra
generated by elements of the form v (a) or 4 (Supp ~3%) for a € A and 71,72 € F by
quantifier elimination.

Hence the conclusion. O

5.7.2 The stable independence relation

Definition 5.24. Let x be a cardinal. A k-universal domain for a theory T is a k-saturated
and strongly x-homogeneous model of T'. If U is a k-universal domain and A € U, we say
that A is small if |4] < k.

Definition 5.25. Let U be a x-universal domain for T'. A stable independence relation on
U is a relation A é B on triples of small subsets of U satisfying the following properties, for
all small A, B,C, D < U, finite u,v € U and small M <U :

1. Invariance under automorphisms of U.
Symmetry : A é_ B <= B JC_ A.
Transitivity : AL BD <= A1 BAA 1L D.
C C BC
Finite character : A JC_ B if and only if a JC_ B for every finite a € A.
Extension : There exists A’ such that tp(A’/C) = tp(A/C) and A’ JC_ B.

Local character : There exists By € B such that |By| < |T| and @ é_ B.
0

I T e

Stationarity of types : If tp(A/M) = tp(B/M) and A ]\J/_[ C and B J\JZ C then

tp(A/M u C) = tp(B/M u C).

Proposition 5.26 (Admitted, [YBHUOS8]). Let k > |T| and let U be a k-universal domain.
Then the theory T 1is stable if and only if there exists a stable independence relation on

U, and in this case the stable independence relation is the independence relation given by

non-diwviding.
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5.7 Stability and Independence

Thus, in order to prove that our theories are stable, we only need to define a stable
independence relation. The independence considered will be the classical independence of

events in probability theory.

Definition 5.27. From now on, we write (A) for dcl”/(A).
Let A, B,C < U be small, we say that A and B are independent over C' and we write
A % B if Yae <A> y Vb e <B>, P(C) (a)IP’<C> (b) = P(C) (a (@ b)

Lemma 5.28. Let A,B,C < U be small, then we have A é_ B if and only if
Vae (A), Pipcy(a) = Pio(a).

Proof. Suppose that Va € (4), Ppcy(a) = Poy(a). Let a € (A4), be (B) and ce (C),

f Pioy (a) Pioy(b) =

which proves that Picy(a).Pcy(b) = Piey(a n b).

Conversely, suppose that A Jc_ B. Let a € (A). The conditional probability Py is

(BC)-measurable and moreover, for b € (B) and c € (C), we have

an Picy(a)

JP<C> (a).]lbﬁc

Pioy(a). 1.1,

J e
ﬁ”m a).P(cy(b).1
Je
I

IP’ (and).

1,11,

_ f 1,
bne

And thus for any (BC)-measurable function f, we have {Picy(a).f = §1,.f, therefore
Pisoy(a) = Pic)(a). =

Theorem 5.29. If 0 is a hyperfinite IRS, the relation of independence L defined above is a
stable independence relation. Consequently, the theory g is stable and the relation L agrees

with non-dividing.
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5.7 Stability and Independence

Proof. 1. Invariance under automorphisms of U : If p is an automorphism of U, by

1

uniqueness of the orthogonal projection, we know that P,cyy = poP(cyop™" and there-

fore P(C) (Q)P<C> (b) = P(C’) (a @ b) if and only if P(p(C)) (pa).IP’<p(C)> (pb) = P(p(C)) (p(a @
b)).

2. Symmetry : The definition is symmetric.

3. Transitivity : Let A, B,C, D be small. First if A % B and A BLC D then by Lemma
5.28, for a € (A), we have P gcpy(a) = Pipey(a) = Pioy(a) so A JC_ BD.
In the other way, if A JC_ BD then P gcpy(a) = Poy(a), but that implies that Py (a)
is a (C)-measurable function such that for all (BC'D)-measurable function f we have
§Picy(a).f = §1q.f. We conclude that Pgcpy(a) = Pipey(a) = Picy(a), and there-
fore that A % C and A BLC D.

4. Finite character : It is trivial by the definition.

5. Extension : Let A, B, C be small subsets of . Let A = (AC), B = (BC) and C = (C).
The three structures A, B and C can be seen as Boolean rings, and we can therefore
define the free product of Boolean algebras D = A%B along with the product measure.
Then D can be seen as a probability probability algebra.

By universality of & and smallness of D, there is an embedding of D in U sending B
back to B. We denote A’ the image of A by this embedding. Of course C is sent back
to C so we have tp(A4’/C) = tp(A/C).

Moreover, it is shown in [] that another characterization of independence is given by
A é B AAB=A %) B, where A A B is the probability algebra generated by A
and B. Thus, we have by construction A’ JC_ B.

6. Local character : Let @ = (uq,...,u,) S U be finite. Consider the conditional proba-
bilities P gy (u;). These are (B)-measurable functions with real values and so there is
a countably
generated o-subalgebra of (B), say (By) where By < B is countable, for which they

are all measurable. But then we have Ppy(u;) = P g,y (u;), so by Lemma 5.28 E% B.
0

7. Stationarity of types : We denote by tp,(Z/Y) the type of a tuple Z over a set of
parameters Y in the language £. In other words, this is the type of Z over Y in the
underlying atomless probability algebra of U.

Let A, B,C < U be small and M < U be small. Suppose that tp(A/M) = tp(B/M),
A AL/[ C and B AL/[ C.

We begin by proving that tp,(4/(M u C)) = tp,(B/{(M v C)). Indeed, for a €
(A), and b € (B),, we have Pyocy(a) = Py(a) and Pirocy(b) = Par(b), but by
Proposition 5.7 types in AP A can be fully described with conditional probabilities and
we know that tp,(A/M) = tp (B/M) so we get tp (A/M v C) =tp(B/M v C).
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5.7 Stability and Independence

Now Corollary 5.23 implies that tp(A/M o C) (resp. tp(B/M v C)) is determined by

tog | U mAv{01(9,,)}/ (Mo C) | (resp. tpe [ U mB Y {1(5,)}/ (MuC) ).

V1€F % Y1€F 0
Y2€F Y2€F %

Thus, let A’ = L%’ AU {7(S,)} and B’ = L% 7B U {y1(S+,)}-
1€ 0 1€
12€Foo §2€Fac

It is clear that tp(A’/M) = tp(B'/M), A’ AJ/_I C and B’ ]\JZ C and we can apply what we

proved just above to conclude that

e | J mAv ()} (Mu0) [=tog | | mBu{n(S.)}/ (Mu0)

~v1€Fp Y1€Fy
Y2€F Y2€F

Hence the conclusion.
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