Groupe de travail de théorie ergodique

Coorganisé avec Matthieu Joseph. Le groupe de travail se réunit tous les vendredis à 10h en salle 1013 du bâtiment Sophie Germain.

Si vous êtes intéressés, inscrivez-vous à la liste de diffusion pour recevoir les annonces. Selon la demande, il est possible que nous diffusions les exposés sur BBB.

Prochain exposé: vendredi 17 janvier, 10:00, salle 1013, bâtiment Sophie Germain, diffusée sur BBB, Odomutants and flexibility results for quantitative orbit equivalence (Corentin Correia).

Let us go back to the study of our favorite group Z! After recalling the main results on quantitative orbit equivalence for probability measure-preserving Z-actions, I will explain my recent work on systems that I call "odomutants". These systems are built by distorting the orbits of odometers. They have various nice properties which enable us to obtain three flexibility results in quantitative OE.
The first one is the non preservation of Kakutani equivalence under L<1/2 orbit equivalence, thanks to a construction of Feldman (which is actually the starting point of my work). The second one is the optimality of Kerr and Li's theorem, stating that measure-theoretical entropy is preserved under log-integrable orbit equivalence. It turns out that the proof uses a more topological aspect of OE, called strong OE, and we can draw a parallel with a famous theorem of Boyle and Handelman. Finally, I proved that for every sublinear map phi, phi-integrable orbit equivalence to any odometer does not imply flip-conjugacy, thus extending a theorem by Carderi, Joseph, Le Maître and Tessera.

Prévisions : L'exposé de Corentin devrait prendre deux séances.

Exposés précédents

Archives du GdT