Groupe de travail de théorie ergodique

Coorganisé avec Matthieu Joseph. Le groupe de travail se réunit tous les vendredis à 10h en salle 1013 du bâtiment Sophie Germain.

Si vous êtes intéressés, inscrivez-vous à la liste de diffusion pour recevoir les annonces. Selon la demande, il est possible que nous diffusions les exposés sur BBB.

Prochain exposé: vendredi 21 février, 10:00, salle 1013, bâtiment Sophie Germain, diffusée sur BBB, A quasi-isometric classification of permutational wreath products (Vincent Dumoncel).

It is in general a hard problem to determine whether two given finitely generated groups are quasi-isometric, even among some "well behaved" classes. One such class, which has been the subject of intensive research in group theory, is the one of wreath products, as they often exhibit unexpected and interesting behaviours.
The classification up to quasi-isometry of lamplighters over Z goes back to 2013, and in a recent work (2021), Genevois and Tessera extended it to all lamplighters over finitely presented one-ended groups. This raises the question of also classifying their permutational variants. In this context, strong rigidity phenomenon as the ones observed for standard wreath products do not hold, whence the need of another approach. After having introduced and discussed several re-inforcements of quasi-isometries, I will sketch the main guidelines of the proof of a quasi-isometric classification of some permutational wreath products, that covers a number of classical cases. If time permits, we will also discuss some applications and open problems.

Prévisions : Le 7 mars nous écouterons la suite de l'exposé de Vincent Dumoncel. En particulier, le 28 février, c'est vacances !

Exposés précédents

Archives du GdT