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Recap .

We reduced proving the existence ofhyperfinite ergodic subgraphs to the following :

Main hemma
.

Let h be a loc
.

ctbl ergodic pmp
Boel graph and let Hodh be a component

-

finite Boel subgraph .
Then for each fel

*

(X
, M) and 330

,
there is a component- finite

Bowl subgraph H.Ho ofG such that

Anf(x) := (average of over (x]H
,

) E /for
I

for all x in a set of measure =1-2.

Also recall that by modifyingHo on an Roinvariant set of measures
,

we may

assume that the Ho-components have bounded size
.

Thus
, taking the quotient by the

Geconnected bounded equel . Rho ,
it is enough to prove the following:

Quotient Main Lemma for graphs.

LetG be an ergodic map loc.bl graph on (X
, M), whose

RN-cocycle is the differential of a bounded Borel Function w : X -> IN30·

Then for
every
fel

,m) and 320
,

there is a component-finite Borel subgraph
H = 2 such that Af(x) :=(x) F (g) ·why)g)FdM
for all x in a set of measure =1- 3

.



Setup of proof of Main Lemma
.

Call a subset VIX G-conceded if the incluced subgraph Glv := GM/VXV) is a connected

graph on V
.

Call a Leo F on X G-connected if each F-class is G-connected,

equivalently ,
the connected components ofRe graph GlF are exactly the F-classes.

To prove
the main lemma

, we need to find a C-connected finite Borel subegrel.

FIRa with AFF(X)EsSfeM for all x in a set of measure - 1-3.

We again may assume that JFdM = 0 and for
any JsO

,
call a finite set UX

↑- negative/5-zeo/ O-positive if AnF := wihl Euflywy) is =5/25
,
07/28.

We will construct a desireda connected e .
rel

.

F by taking some kind of

Bowe maximal filing with G-connected Ezero sets. But how do we know such set

even exist ???

Asymptotic averages along G 10)

Let h
,

w
,

f be as in the quotient main lemma. For a point xEX,
call a real -EIR

an asymptotic average off alough atx if r can be approximated by averages over

arbitrarily large finite G-connected UX
,

i
.

e
.

F3TO *NO there is a finite Gocon-

nected UX such that w(U) > N and Arfwar .

In other words
,

these are all possible averages which can be approximated by

abitrarily lige connected neighbourhoods of x

Devote by Af(x) the not of all asymptotic averages off along G at x.



Observation. For each xX
,
reA(x)

,
finite G-connected set HEX

,

and 320
,

there are

arbitrarily walarge V2Hex with Antar .

Proof. Take Fox large enough so the impact of U in V : = UUV is negligable.

Properties of A

() A(x) is a closed interval : Elflla
,

llflld].

(6) A(x) + 0 for a .
e

. xeX.

(6) x1 A(x) : X + F(R) is Ra-invariant Bonel
,

hence consant a
.
e

. by ergodicity.

Proof .
(a) The closedness of f(x) follows from the assuptotic nature of the def of

asymptotic averages. That A (x) is convex follows from :

Connected intermediate value property .

Let U = VEX be finite monempty a connected sets. Then for

each real- between And and Af
,

Where is a Geconnected set UEI=V with Aar ,

where A : = 2/lfle · (w/ld/w().

Proof
.

Same as before
,
but we add vertises to U in such#order so that the intermediate ats UEI= Iz = ... [ In =V are

C-connected
.

Now if a,betf(x) ,
11

,

and arE6
,

then let lex be an arbitrarily molange



he connected out with Anfsea ,
and by the Observation above

, yet a G-connected finite

Valex such Net Ass6 .

Then the intermediate value property gives a G-coucer

ted UCIEV with Alar ,
where A :=211falula/w(l) < 3/3.

(6) By ergodicity , a.e. Re-class is r-infinite (w-finite classes form a smoothe ut)

so the compactness of ClEld
,
Alld] finishes the proof

() let x = X and reff(x)
.

We show Rat retaly) for
any ye[x]g .

41 P : =

Exxo
, Xy...,

Xn = yh be a G-path ,

then Observation gives an arbitrarily large VI P25* 33

with Antar , witnessing refly).

Discarding an Ra-invariant wall set
,

we get that Aut is constant.

Now if the main lemma is at all true
,

then we'd at least have side tuf.

Thus
,

we better be ablehe prove Store Af .

This will indeed follow from the local-

global bridge lemma and the following :

Asymptotic averages (AA) filing lemma . For each 310
,

there is a Boel tiling 3 =

[x] finite monempty G-connected sets

such that dow (5) is nonull and Astes A ,
i

.
e. distance (Asf

,
St) = 2.

To
prove this we need slightly better Bonel maximal blings ,

which we now discuss



Saturated dilings (Miller-8)
Let R be a Ber on a standard Borel space

X
.

For filings 50,
31:[X3*

we say that 3,
extends So

,

and write Jo5
,
if each tile SESo is contained in

a file 55. . If SIS is injective ,
we say Not S

, injectively extends So
,
and write

S
.
&"S

..

R-class R-class

3 3
3

.
3

.

↳

non-injective injective
R-class

Det
.

For 22[X] call a filing 32C saturated within

if there is no proper injective extension with 2
,

:
. e.51] I doesn't

and 5:2 and 53.
exist in 2

saturated 3
Note

,

saturated maximal
.

Theorem
.

Let R be an mapBar on
(X

, M) whose RN-nocycle is the differential of a Bonel function

~. X- INso
. Every Bonel collection EC[X] admits a Boo saturated tiling 522

,
after

discarding an R-invariant null set.

Proof
.

Let c : 2-> IN be a Bol coloring of the intersection graph on C
. Iteratively construct

a sequence Jodi,:3 ... of filings with t
so that In contains all outs Nee



of colour n which contain If like from Sun
.

Then Fg :=R131) is smooth because each

Fa-class looks like His :
· This implies that each Fo-class is we finite are.

(Exercise : smoot ey,rel . have wefinite classes a.e. by mass transport) Heure each Fa-class is finite are.

because w = l
. Discarding an R-invariant wall set

,
Fa is knife and one checks that

3 : = linSu :=Se : S dom(u) is saturatedn

Asymptotic averages
alongG (continued).

At tiling lemma. For each 30
,

there is a Boe hiling 3-[X] with sonall domain

such that Aste,
A2
.

Proof. Note that for each xeX there is Nx30 such that if Nex is a G-connected finite set

with w(ak
- No then Auftaduf

.

Indeed
,

otherwise a requent (Hal of counter-examples
and compactness of Elfa

,
It10] will witness the existence of an reAf(x) with raAf()

Let 2 := all U2[X]
*

such that wilk-Nx for come xEH
,

and discarding an Ra-invariant

will set
, get a Bonel saturated tiling 5:2.
Because I has tiles in every Raclass and S is maximal

,
5 too must have likes

in every Ra-class
.

This and saturation imply that dom 13) = X
.

Indeed
,
if X(dom (5)

# $
,

then there is xEX(dom (3) that is G-adjacent to some yedom (3) . Lettings be

· the tile of 3 containing y ,
we have SUGX] EC

, contradicting saturation.
3
-y

Rc-class



Corollary
.

P = Jame Af.
Proof

. Suppose not
.

Because Act = Ca
,
b)

.
we must have Oca or 610 . Suppose

E
for concreteness that Pca

,
i

.
e. 11

Aut
.

Let 3: .

Then the Al filing lennaI

8 a b

gives ,
after discarding a wall set

,
a Bore filing 52[X]

* with G-connected finite sets

with Autesla ,
6)

,
so Aufs

.
E

,
and dom (5) =X .

But this contralists the bridge lemma :

0 = Som = (Ar(s)fdu = 20.

Proof of Main Lemma.

Okay ,
now set J= s and take a Bowl maximal (even saturated

, why not) tiling
J with - connected zero sets. Now we know that S has files in every Ra-class.

Can we decue
,

as before
,

that XIdom (3) must contain only fregative or only
& - positive points ae. ? No :

A

⑨

Sure
,

we can combine several 5-tiles together
D

with points outside of dow(5) to form G
finite

⑨

&
& I

connectedfo zero sets
,

but this doesn't contrar
-

⑨

dist saturation
.

finite

Idea: we need even more maximal/saturated

tilings to prevent such "packages"...
3. d negative , J-positive Ra-class



Packed tilings (5) R-class
& &

let R be a aBer on a standard Borel space X.
&

=
-

&
-

For afiling 3 : [X]* and 200
,

a set UCLX]* is called
*

↓ -package U

an d-package over 3 if it is R13) - invariant and
S

w(l (dom1s)) = 2. w/Uldom(5)).

For tilings 50
,
5 . /X we say that

3
,

is an -packing extension of So
,

written

Jod3
,

if each tileES , is an depackage over So
.

For a collection 2: [x] a filing 52C is called d-packed within 2 if there is n

-

proper depacking extension SAS withliles from 2.

Note
. A- packed maximal

.
Exercise : Any extension JET of a d-packed filing JEI is depacked.

Theorem
.

Let R be an mapBar on
(X

, M) whose RN-nocycle is the differential of a Bonel function

~ X- INso
.

Then for each da O
,

each Bol collection 22[X]n* admits an depacted Bonel

tiling JEC
,

after discarding an R-invariant will set.

Proof. As before
,

use a Boel cl colouring of the intersection graph onI to get a sequence

Joa5 , Gr3zEj ...

of flings with T and show that StimIn is a desired filing
.

The main point is to show

that the tiles of 3 are unfinite a.e
.

(hence finite ae)
. Letting F := R13)

,
this is done

via violating mass transport on the union E of all w-infinite F-classes
,

hense forcing z to

!
be wall

.

Left as exercise,

·:
&

: iiiiiii !



Exercise : In the last Reorem
,

we can ensure that I is both depacked and salurated.

Proof of Main Lemma (continued).

Blanket assumption. For every
G-connected finite Borel

eq .

rel
.
FERa

,

the setAf of asyup

totic averages of the quotient function #/F := Af meets both 1-0
, -3] and [22

,
a).

Justification
. Firstly ,

note that because the F-classes may
not have bounded size

,
the quotient weight func

tion w/F may
not be bounded

,
hence the Intermediate Value Property may fail

,
soA may

not be

convex. However
,
it is will a compactat and XHAH/E() is (Ra/Fl-invariant

,
hease constant are

Now suppose that
, say , Ar (AE) = 1-22

,
4)

.

Then the AA tiling lemma gives a Bore filing
Y XIY

3. [x] with small domain and likes U satisfying Ante 1-2,
%
-20 E Ilf/la

LetY be the union of all tiles UE3 with Aft(-3
,

33. The the bridge lemma yields 02-2 . M(4) +

2M(X(i) ,
so M(X(Y) =2

.

Thus
,
R(3) satisfies the conclusion of the main lemma

.

Now fix any positive Jas" and L/allele, and let I be an d-packed filing with nike

G-connected E-zero sets
.

It's analyze XI dom 15).

& ·
Claim

. GIxidom(s) is component - finite.
&

&

Proof. Suppose towards a contradiction that Glxidom(s)
&

&

has an infinite component (so WIC) = & because wil.
&

Then there don't exist arbitrarily large Geconnected &
C



But are do negative and that are depositive because the Intermediate Value Property would give
a G-connected d-zero set in C

, contradicting the maximality of J. Thus
, suppose Couls has

i-negative arbitrarily large G-connected sets.

Fix an x = C
. By the blanket assumption, &

& D

there exists a G-connected R13) - invariant
⑨

S

- ·
finite set Uzx such that AME" and U+ S U

+

He
in large enough that A := 211flla I w/la/w(r) = J. &

By the intermediate value property ,
there is a

&

&
C

finite HoEC disjoint from Ut such that V : = U
- He is G-connected and -JAF-0 .

I I
-j Auf O Auf

Thus
,

V is a G-connected o-zero set
.

Moreover
,

because AFE0 while Anot ?? He at

U. must be sufficiently large relative to We he change the average by 232
, namely :

3 /Aut - Auf12IEllow(UD/wIUt,
so w(/w(U=/21022 .

But doulg)9V = Ut
,

so V is an depackage over 3,

contradicting I being d-packed.

Raclassi

Okay ,
but does this somehow

say
that dom(s) .... ·.

has large measure ? Yes
,
if we assume ,

as we * &

may ,
that G is not h-hyperfinite. - ·

·

· ⑨

- in

3. d negative , J-positive



Finitizing cuts and finitizing price.

Let G be a foc
. ctbl map graph or (X

, M).

Def 10)
.

A set (EX is called a finitizing cut forh if GIx) is component - finite
.

The finitizing

price of G is the number +pula) = inf(M(C) : =X is a Borel finitizing cut for G] .

Prop .
If G is not polyperfinite ,

then Apulat O . (The converse holds for locally finite G
.)

Proof
. Suppose /pu(C) = 0 and show that G is M-hypefinite.

Let In be a builting cut

of measured2
,

so replacing In with VCr (the proof of Bone-Candelli)
,

we was
k = n

asscome Hot the In are decreasing and MlCul-sO , soC is wall. Then

G :Gr ,
where Gu : = Exca ,

witnesses the Me-hypefiniteness of G.

Proof of Main Lemma (continued).
Thus wherever we take an d packed filings with E-zero sels for

any small enough d
,
d,

we get that dow (3) is a finitizing cut for 6
,

10 uldom/5)) = App(a) > 0.

But fiulal might be king ,
much smaller than 1-2. Ra-class

Maybe we iderate Mis
, letting du

,
In >O

,

and get a sequence

oftilings So ,
31

,
Sa

,

"

,
where each Ju is both ha-packed

and saturated with G-connectedIn-zero likes that are So?3, 552E ...

Purinvariant
,

where Ru :=URBi) ,
and have size > n . Put Ra := R(5n)·

nEIN
-



Last Claim
. Udom (5a) is conall.

This would indeed finish the proof because the classes of Ru onW dom (3are

do-zero and JE so takingh large enough we would get that the Ra-classes

are 3-zero Grounded on a -1-3 measure set.
Ra-class T

/

-

&

·

/

Proof-idea of Last Claim. What I didn't see for half a year was
-

the following triviality (dual Boel-Candelli) :
-

*

3043, 5526 ...
.. y

Measure pigeonhole. For a prote space (X
, M) and 120

,
it sets DnEX have measure 2X

,
the

limsup Du := (xX : VxeDul = AUDu has positive measure (in fact,

Thus
, Do : = limsup dom (3u) has positive measure

,
heave meets a.e . G-component.

Note
.

For each xE00
, himlx]rul =N and Me is du- packed and naturatedh

So
any point yEX1 Do that is G-adjacent to xDa has less and less excuse for

not joining the Su-tile of X
,

as n + d
.

And indeed
,
another packing-style mass trans-

port on Ro-classes in Dr Gadjacent to XID chows that these chameless points

ye88 form a will set
.

This implies that Do is conull
,

here so is Udom1Sal.
nE/N


