
Quantitative orbit equivalence for p.m.p. Z-actions, an overview, and
more details on flexibility results provided by odomutants

Corentin Correia

These notes first aim at giving an overview of all the results on quantitative orbit equivalent in the context of
actions of the group Z, which reduces to the data of an invertible transformation representing a generator of Z.

Secondly, we will explain with few details recent flexibility results using a class of interesting systems, called
odomutants, introduced by the author (the paper is not yet online).

The basic definitions and properties of ergodic theory are given in Appendix A
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1 Quantitative orbit equivalence: first definitions

The probability space pX,A, µq is assumed to be standard and atomless. Such a space is always isomorphic to
pr0, 1s,Bpr0, 1sq,Lebq. We consider maps T : X Ñ X acting on this space and which are bijective, bimeasurable and
probability measure-preserving (p.m.p.), meaning that µpT´1pAqq “ µpAq for all measurable sets A Ă X, and
the set of these transformations is denoted by AutpX,A, µq, or simply AutpppX,µqqq, two such maps being identified if
they coincide on a measurable set of full measure. In this paper, elements of AutpX,µq are called transformations
or (dynamical) systems. One of the main goals in ergodic theory is to classify systems up to conjugacy.

Definition 1.1. Two transformations T P AutpX,µq and S P AutpY, νq are conjugate if there exists a
bimeasurable bijection Ψ: X Ñ Y such that Ψ‹µ “ ν and Ψ ˝ T “ S ˝ Ψ almost everywhere.

Some classes of transformations have been classified up to conjugacy, the two examples to keep in mind are the
following. By Ornstein [Orn70], entropy is a total invariant of conjugacy among Bernoulli shifts. Moreover Halmos
and von Neumann [HVN42] prove that two ergodic systems with discrete spectrums are conjugate if and only if
they have equal point spectrums. In full generality, the problem of conjugacy is intractable and we look for weaker
relations, such as orbit equivalence.

Definition 1.2. Two transformations S P AutpX,µq and T P AutpY, νq are orbit equivalent if there exists
a bimeasurable bijection Ψ: X Ñ Y satisfying Ψ‹µ “ ν, such that OrbSpxq “ OrbΨ´1TΨpxq for almost every
x P X. The map Ψ is called an orbit equivalence between S and T .

Notice that orbit equivalence and ergodicity are two properties related to the orbits. It is easy to see that orbit
equivalence preserves ergodicity. Actually, Dye’s theorem states that this equivalence relation is too weak among
ergodic systems.

Theorem 1.3 (Dye [Dye59]). Two ergodic transformations T in AutpX,µq and S P AutpY, νq are orbit
equivalent.

Trivial relation Conjugacy

Orbit equivalence

Assumptions on the cocycles ?

Since orbit equivalence cannot distinguish between transformations, we have to strengthen the definition of orbit
equivalence in order to capture some dynamical properties. To this end, we consider functions, called the cocycles,
which more precisely describe the equality of the orbits.

Definition 1.4. In the case of aperiodic transformations, we can define the cocycles associated to an orbit
equivalence. These are measurable functions cS : X Ñ Z and cT : Y Ñ Z defined almost everywhere by

Sx “ Ψ´1T cSpxqΨpxq and Ty “ ΨScT pyqΨ´1pyq

(cSpxq and cT pyq are uniquely defined by aperiodicity).

"Aperiodic" means that almost every orbit is infinite, or equivalently that for almost every x, Tnpxq “ x for
every nonzero integer n. Ergodicity implies aperiodicity.

As illustrated in the Figure 1, given an orbit equivalence between two transformations S and T , the cocycles
encode the distortion of the orbits to move from the dynamic of T to the dynamic of S. So we expect that two
orbit equivalent transformations have similar dynamical properties if we add strong enough restrictions on these
cocycles ("we warn the reader that the cocycles depend on the orbit equivalence we consider).
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Figure 1: Orbit equivalence between aperiodic transformations, when Ψ “ idX .

Definition 1.5. Given a map φ : R` Ñ R`, a measurable function f : X Ñ Z is said to be φ-integrable if
ż

X

φp|fpxq|qdµpxq ă `8.

Two transformations in AutpX,µq are said to be φ-integrably orbit equivalent if there exists an orbit
equivalence between them whose associated cocycles are φ-integrable. The notion of Lp orbit equivalence
refers to the map φ : x Ñ xp, and a Lăp orbit equivalence is by definition an orbit equivalence which is
Lq for all q ă p.
Another form of quantitative orbit equivalence is Shannon orbit equivalence. We say that a measurable
function f : X Ñ Z is Shannon if the associated partition tf´1pnq | n P Zu of X has finite entropy, namely

´
ÿ

nPZ
µpf´1pnqq logµpf´1pnqq ă `8.

Two transformations in AutpX,µq are Shannon orbit equivalent if there exists an orbit equivalence
between them whose associated cocycles are Shannon.

For example, integrability is exactly φ-integrability when φ is non-zero and linear, and a weaker quantification
on cocycles is the notion of φ-integrability for a sublinear map φ, meaning that limtÑ`8 φptq{t “ 0.

When φ is non-decreasing, then φ-integrability of a Z-valued function f gives information on its tail, using
Markov’s inequality:

µ p|fpxq| ą nq “ µ pφp|fpxq|q ą φpnqq ď

ş

X
φp|fpxq|qdµpxq

φpnq
.

On the contrary to the statistical information provided by φ-integrability, Shannon property quantifies the uncer-
tainty of the value of fpxq, if x is random with respect to µ (see Section A.3 in the appendix).

" φ-integrably orbit equivalence and Shannon orbit equivalence are not equivalence relation a priori (except
when φ is at least linear, by Belinskaya’s theorem, see Section 2.1)

2 Overview : rigidity/flexibility results

As explained in the last section, we want to weaken the difficult problem of conjugacy. However orbit equivalence is
a trivial relation so it is not an interesting theory. Now quantitative forms of orbit equivalence are strenghtenings
of orbit equivalence and we want to know if they are still far from the difficult problem of conjugacy. Then we will
be interested in dynamical properties preserved under these relations, or flexbility results.

2.1 Conjugacy/flip-conjugacy
‚ When φ is a nonnull linear map (we talk about integrable orbit equivalence), we recover a conjugacy problem.

Theorem 2.1 (Belinskaya [Bel69]). Let S and T be transformation in AutpX,µq. If there exists an
orbit equivalence between them such that one the cocycles is integrable, then S and T are flip-conjugate,
meaning that S is conjugate to T or to T´1.
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‚ When φ is sublinear, it is natural to wonder whether φ-integrable orbit equivalence boils down to flip-
conjugacy.

§ Let us start with an asymmetric result (as for Belinskaya’s theorem) when we only assume φ-integrability
on one cocycle.

Theorem 2.2 (Carderi, Joseph, Le Maître, Tessera [CJLMT23]). Let φ : R` Ñ R` be a sublinear
map and let S P AutpX,µq be ergodic. There exists T P AutpX,µq and an orbit equivalence between
S and T such that the cocycle cT is φ-integrable but T and S are not flip-conjugate.

§ What about adding restrictions on both cocycles ?

Theorem 2.3 (Carderi, Joseph, Le Maître, Tessera [CJLMT23]). Let φ : R` Ñ R` be a sublinear
map and let S P AutpX,µq be ergodic. Assume that there exists an integer n ě 2 such that Sn is
ergodic. Then there exists T P AutpX,µq such that S and T are φ-integrably orbit equivalent but
not flip-conjugate.

The proof of the last theorem is constructive and the system T is built so that Tn is not ergodic. Theorem 2.2 is a
direct corollary of Theorem 2.3 when S admits an integer n ě 2 such that Sn is ergodic. For the systems S which
do not satisfy this assumption, the authors used a Gδ argument to prove that we can find a weakly mixing system
T , and then Theorem 2.2 follows from the fact that S is not weakly mixing.

§ Examples of systems S Theorem 2.3 does not apply for are some odometers (see Remark 3.1). In these
notes, we will explain the following theorem.

Theorem A (C.). Let φ : R` Ñ R` be a sublinear map and let S P AutpX,µq be an odometer.
Then there exists T P AutpX,µq such that S and T are φ-integrably orbit equivalent but not
flip-conjugate.

The system T that we build is an odomutant associated to S. We will later introduce these systems
which forms a source of counter-example for many flexibility results.

‚ What about Shannon orbit equivalence ?

Theorem 2.4 (Carderi, Joseph, Le Maître, Tessera [CJLMT23]). Let φ : R` Ñ R` be a map satisfying
logptq “ Opφptqq as t goes to 8. If a Z-valued function f is φ-integrable, then it is Shannon.

As a corollary, when φ satisfies the assumption of the theorem, φ-integrable orbit equivalence implies Shannon
orbit equivalence, and Theorems 2.2 and 2.3 hold true in the case of Shannon orbit equivalence.

‚ The following result is the first example of famous dynamical systems related by these quantitative forms of
quantitative orbit equivalence but which are not flip-conjugate.

Theorem 2.5 (Kerr, Li [KL24]). Every odometer is Shannon orbit equivalent to the universal odome-
ter.

In recent years, odometers have played a crucial for explicit constructions of orbit equivalence, thanks to their
combinatorial structure, that is what Kerr and Li used to prove their theorem. We generalized their construction
in [Cor24] to rank-one systems which almost have the same structure as odometers but form a class of systems
with various dynamical properties (whereas the subclass of odometers is not rich enough), thus providing flexibility
results (see Theorems 2.9, 2.10, 2.11 and 2.12). In [DKLMT22], Delabie, Koivisto, Le Maître and Tessera built
concrete orbit equivalences between actions of amenable groups using Følner tilings, which turn out to be some
kind of generalizations of odometers for more general group actions. Finally, we use the combinatorial structure of
odometers to build our odomutants and get flexibility results. We will introduce later odometers, their classification
up to flip-conjugacy (and what it means to be universal) and we will explain their structures.

Let us now see the behaviour of dynamical properties under these quantitative forms of orbit equivalence.
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2.2 Ergodicity
As explained in the last section, ergodicity and orbit equivalence are two relations related to orbits and we have
the followings: given S, T P AutpX,µq, with S ergodic,

‚ if S and T are orbit equivalent, then T is ergodic;

‚ the converse is true by Dye’s theorem : if T is ergodic, then S and T are orbit equivalent.

2.3 Mixing properties
Weak mixing property is not preserved under the quantitative forms of orbit equivalence associated to a sublinear
map, or under Shannon orbit equivalence.

‚ If S is weakly mixing, then all its powers are weakly mixing, and since weak mixing property implies ergodicity,
all the powers of S are ergodic. Since the counter-example T in Theorem 2.3 is built as a system admitting a
power which is not ergodic, we deduce the following.

Corollary 2.6. Given a sublinear map φ : R` Ñ R`, every weakly mixing system is φ-integrably orbit
equivalent to a non weakly mixing system.

‚ Moreover, the proof of Theorem 2.2 shows (see the paragraph after Theorem 2.3):

Corollary 2.7. Given a sublinear map φ : R` Ñ R`, every non weakly mixing system S is φ-integrably
orbit equivalent to a weakly mixing system T such that cT is φ-integrable.

‚ A recent preprint proves a stronger result in the context of Shannon orbit equivalence.

Theorem 2.8 (O’Quinn [O’Q24]). Every system in AutpX,µq is Shannon orbit equivalent to a weakly
mixing system.

‚ We found concrete a concrete example of systems which are Shannon orbit equivalent, one is weakly mixing
and the other is not.

Theorem 2.9 (C. [Cor24]). If φ : R` Ñ R` satisfies φpxq “ opx1{3q, then the universal odometer and
Chacon map are φ-integrably orbit equivalent.

Historically, Chacon map is the first example of weakly mixing system which is not strongly mixing. It is defined
with a cutting-and-stacking construction with only one tower at each step, such a system is called a rank-one system.
Chacon map was actually the first system defined this way and it opens to the study of rank-one systems.

We can neither find rigidity results for strong mixing property.

‚ Indeed, Corollary 2.6 can also be stated in terms of strong mixing property, by the same arguments.

‚ Moreover we found a concrete example:

Theorem 2.10 (C. [Cor24]). If φ : R` Ñ R` satisfies φpxq “ opx1{3q, then the universal odometer is
φ-integrably orbit equivalent to a strongly mixing rank-one system.

2.4 Eigenvalues, point spectrum
Again, we only have flexibility results about eigenvalues.

‚ First, Theorem 2.5 provides two Shannon orbit equivalent systems with different point spectrums (see Sec-
tions 3.1.2 and 3.1.3). Moreover, Theorem 2.3 provides two systems which do not have the same point
spectrum. Indeed, given a prime number n and an ergodic system T P AutpX,µq, if Tn is not ergodic, then
T has exp

`

2iπ
n

˘

as an eigenvalue, and the converse is true.
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‚ We also provide concrete examples with irrational rotations. Note that the irrational rotation of angle θ P RzQ
has exp p2iπθq as an eigenvalue, whereas the eigenvalues of odometers are all rational (rational means that it
has the form exp p2iπαq where α is rational).

Theorem 2.11 (C. [Cor24]). Let φ : R` Ñ R` be a map satisfying φpxq “ opx1{3q. There exists a
uncountable dense subset Θ of RzQ such that for every θ P Θ, the universal odometer is φ-integrably
orbit equivalent to the irrational rotation of angle θ.

‚ The previous statement do not deal with all the irrational number θ a priori. For the remaining θ, we have
the following weaker statement.

Theorem 2.12 (C. [Cor24]). Let φ : R` Ñ R` be a map satisfying φpxq “ opx1{3q. For every irrational
number θ, the universal odometer is φ-integrably orbit equivalent to a system which has exp p2iπθq as
an eigenvalue.

2.5 Entropy
Fortunately, some quantitative forms of orbit equivalence (not only integrable orbit equivalence) are not trivial
relations like orbit equivalence itself.

‚ Entropy is an invariant of Shannon orbit equivalence:

Theorem 2.13 (Kerr, Li [KL24]). Let S, T P AutpX,µq. If S and T are Shannon orbit equivalent,
then hµpSq “ hµpT q.

Trivial relation Conjugacy

Flip-conjugacy

Shannon orbit
equivalence

cS or cT
is integrable

φ-orbit equivalence for log ≤ φ
Orbit equivalence

Figure 2: Here is a schematic view of the interplay between the relations on ergodic bijections we have seen so far.

‚ From Theorem 2.4, we deduce:

Corollary 2.14. Let φ : R` Ñ R` be a map satisfying logptq “ Opφptqq as t goes to 8. Let S, T P

AutpX,µq. If S and T are φ-integrably orbit equivalent, then hµpSq “ hµpT q.

‚ This result is optimal.

Theorem 2.15 (C.). Let α be a positive real number or `8. There exist S, T P AutpX,µq such that:

1. hµpSq “ 0;

2. hµpT q “ α;

3. there exists an orbit equivalence between S and T , which is φm-integrable for all integers m ě 0,

where φm denotes the map t Ñ
log t

logp˝mq t
and logp˝mq the composition log ˝ . . . ˝ log (m times).

Outlines of the proof of Theorem 2.15:
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– In the proof, S is an odometer and T an associated odomutant. We can also describe a large class of
odometers for which the theorem applies.

– Topological entropy is easier to use in this context. If T is uniquely ergodic, we can connect htoppT q with
hµpT q, via the variational principle.

– For htoppT q to be well-defined, T has to be a topological system. It will be possible, with some assump-
tions, to extend odomutants to minimal homeomorphisms on the Cantor set X. The orbit equivalence
with the odometer becomes a strong orbit equivalence.

– If T is strongly orbit equivalent to a uniquely ergodic system S, then T is uniquely ergodic. Therefore,
htoppT q “ hµpT q.

– It remains to find the parameters pqnq and the permutations so that htoppT q “ α and the orbit equivalence
is almost log-integrable.

Hence the more general statement (supernatural numbers are introduced in Section 3.1.3):

Theorem 2.16 (C.). Let α be either a positive real number or `8. Let S be an odometer whose
associated supernatural number

ś

pPΠ p
kp satisfies the following property: there exists a prime number

p‹ such that kp‹
“ `8. Then there exists a Cantor minimal homeomorphism T such that

1. htoppT q “ α;

2. there exists a strong orbit equivalence between S and T , which is φm-integrable for all integers
m ě 0,

where φm denotes the map t Ñ
log t

logp˝mq t
and logp˝mq the composition log ˝ . . . ˝ log (m times).

Examples of odometers S to which this theorem applies are the dyadic odometer, more generally the p-
odometer for every prime number p, or the universal odometer.

We will detail the proof of the following weaker version:

Theorem B (C.). Let S be the universal odometer. Then there exists a Cantor minimal homeomor-
phism T such that

1. htoppT q ą 0;

2. there exists a strong orbit equivalence between S and T , which is φm-integrable for all integers
m ě 0,

where φm denotes the map t Ñ
log t

logp˝mq t
and logp˝mq the composition log ˝ . . . ˝ log (m times).

‚ Let us point out that Theorem 2.16 generalizes a famous theorem of Boyle and Handelman.

Theorem 2.17 (Boyle, Handelman [BH94]). Let α be either a positive real number or `8. Let S be
the dyadic odometer. Then there exists a Cantor minimal homeomorphism T such that

1. htoppT q “ α;

2. S and T are strongly orbit equivalent.

Boyle and Handelman use

– Bratteli diagrams: combinatorial objects encoding the cutting-and-stacking construction of the Cantor
minimal homeomorphisms, see [HPS92];

– and the dimension groups: algebraic tools, provided by Bratteli diagrams, which form complete invariants
of strong orbit equivalence, see [GPS95];
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to prove that the system T that they build is strongly orbit equivalent to S. In particular, the orbit equivalence
is established in an abstract way, whereas the orbit equivalence between an odometer and our odomutants
is very concrete and we can also quantify the cocycles !

Actually, it turns out that the dynamical systems T built by Boyle and Handelman (via their Bratteli diagrams)
are... odomutants! The work of Boyle and Handelman was not the starting point of our study of this new
class of systems (see Section 2.6).

2.6 Loose Bernoullicity property
A well-known equivalence relation, called even Kakutani equivalence, preserves entropy. We may wonder if there
exists a connexion with the quantitative forms of orbit equivalence.

‚ We give a partial answer, again using odomutants.

Theorem C (C.). There exists a system T P AutpX,µq which is Lă1{2 orbit equivalent (in particular
Shannon orbit equivalent) to the dyadic odometer but not evenly Kakutani equivalent to it.

As for the conjugacy problem, there exists a class of systems for which the problem of even Kakutani equivalence
(and also Kakutani equivalence) is well-understood: the class of loosely Bernoulli systems (containing odometers,
Bernoulli shifts, etc). It is closed under Kakutani equivalence and the entropy is a total invariant of even Kakutani
equivalence. To prove Theorem C, the system T that we build is an odomutant which is not loosely Bernoulli. This is
an example of zero-entropy and non loosely Bernoully system built by Feldman [Fel76] and its interesting structure,
closed to odometers, led us to find a formal definition of such a system and to open the study of odomutants.

Question 2.18. Does even Kakutani equivalence imply some quantitative form of orbit equivalence ?

3 Towards odomutants

Topological entropy and loose Bernoulli property are properties related to words, and odometers are systems which
do not produce a lot of words with respect to partitions, that is the reason why they have zero entropy and are
loosely Bernoulli. To prove Theorems B and C, the goal is to build systems orbit equivalent to odometers and which
produce a lot of words in such a way they have positive entropy and are not loosely Bernoully.

3.1 Odometers

3.1.1 Adding machine on the Cantor space

Given integers q0, q1, q2, . . . greater than or equal to 2, let us consider the Cantor space

X –
ź

ně0

t0, 1, . . . , qn ´ 1u,

endowed with the infinite product topology and the associated Borel σ-algebra. The odometer on X is the adding
machine S : X Ñ X, defined for every x P X by

Sx “

"

p0, . . . , 0, 1 ` xi, xi`1, . . .q if i – min tj ě 0 | xj “ qj ´ 1u is finite
p0, 0, 0, . . .q if x “ pq0 ´ 1, q1 ´ 1, q2 ´ 1, . . .q

.

In other words, S is the addition by p1, 0, 0, . . .q with carry over to the right.
An odometer is more generally a system which is conjugate to S for some choice of integers qn. In this pa-

per, we only consider this concrete example with the adding machine and we refer to it as "the odometer on
ś

ně0 t0, 1, . . . , qn ´ 1u".
Let us introduce the cylinders of length k, or k-cylinders,

rx0, . . . , xk´1sk –

#

pynqně0 P
ź

ně0

t0, 1, . . . , qn ´ 1u

ˇ

ˇ

ˇ
y0 “ x0, . . . , yk´1 “ xk´1

+

.
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ζ2

[0]1

[1]1

[2]1

[0, 0]2

[1, 0]2

[2, 0]2

[0, 1]2

[1, 1]2

[2, 1]2

[0, 0]2

[1, 0]2

[2, 0]2

[0, 1]2

[1, 1]2

[2, 1]2

[0, 0, 0]3

[1, 0, 0]3

[2, 0, 0]3

[0, 1, 0]3

[1, 1, 0]3

[2, 1, 0]3

[0, 0, 1]3

[1, 0, 1]3

[2, 0, 1]3

[0, 1, 1]3

[1, 1, 1]3

[2, 1, 1]3

[0, 0, 2]3

[1, 0, 2]3

[2, 0, 2]3

[0, 1, 2]3

[1, 1, 2]3

[2, 1, 2]3

ζ3 ζ3

R1 R2

R2 R3

Figure 3: Example of odometer with q0 “ 3, q1 “ 2, q2 “ 3 (so h1 “ 3, h2 “ 6, h3 “ 18).

We also use the symbol ‚ when we do not want to fix the value at some coordinate. For instance, rx0, ‚, x2s3 denotes
the set of sequences pynqně0 satisfying y0 “ x0 and y2 “ x2. By convention, the 0-cylinder is X. We can also set a
partially defined map

ζn : Xzrq0 ´ 1, . . . , qn´1 ´ 1sn Ñ Xzr0, . . . , 0sn

which is the addition by
p 0, . . . , 0

loomoon

n´1 times

, 1, 0, 0, . . .q.

For example, S and ζ1 coincide on Xzrq0 ´ 1s1. As illustrated in Figure 3, the cylinders and the maps ζn offer a
very interesting combinatorial structure with successive nested towers R1,R2, . . ..1

From pqnqně0, a new sequence phnqně1 is defined by

@n ě 1, hn – q0q1 . . . qn´1.

The integer hn is the height of the tower Rn (see Figure 3). By convention, we set h0 – 1, the height of the tower
R0 – pXq with a single level.

As a topological system, S is a Cantor minimal homeomorphism. As a measure-theoretic system, S is uniquely
ergodic and its only invariant measure is the product µ –

Â

ně0 µn where µn is the uniform distribution on
t0, 1, . . . , qn ´ 1u.

3.1.2 Point spectrum

The odometer S on
ś

ně0 t0, 1, . . . , qn ´ 1u has discrete spectrum and its point spectrum is equal to
"

exp

ˆ

2iπk

hn

˙

| n ě 1, 0 ď k ď hn ´ 1

*

1This kind of construction that we see in Figure 3 is called a cutting-and-stacking construction.
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(see Example A.10).

3.1.3 Classification up to flip-conjugacy

Let us now explain the classification of odometers up to conjugacy (and even flip-conjugacy).
Let Π denote the set of prime numbers. A supernatural number is a formal product of the form

ś

pPΠ p
kp ,

with kp P N Y t`8u.
Given a prime number p P Π, denote by νppkq the p-adic valuation of a positive integer k. To every odometer

defined with integers q0, q1, . . ., we associate a supernatural number
ś

pPΠ p
kp defined by

kp –
ÿ

ně0

νppqnq.

As a consequence of Section 3.1.2 and Halmos-von Neumann Theorem, the supernatural number
ś

pPΠ p
kp forms a

total invariant of measure-theoretic conjugacy in the class of odometers. If kp “ 8 for every prime number p, then
the odometer is said to be universal. Given a prime number p, the p-odometer is the odometer such that kp “ 8

and kq “ 0 for every q P Πztpu. In the case p “ 2, it is also called the dyadic odometer.

Remark 3.1. Given the odometer S on
ś

t0, . . . , qn ´ 1u and a positive integer k, the system Sk is not ergodic if
and only if k divides hn when n is large enough. So the odometers for which Theorem 2.3 does not apply are the
ones whose associated supernatural numbers satisfy kp ą 0 for every prime number p.

3.1.4 Coalescence

Definition 3.2. We say that S is a factor of T , or T is an extension of S, if there exists a measurable map
Ψ: X Ñ Y which is onto and such that Ψ‹ν “ µ and S ˝Ψ “ Ψ˝T almost everywhere. The map Ψ is called
a factor map from T to S.

Definition 3.3. A transformation S P AutpX,µq is coalescent if every system T P AutpX,µq which is
isomorphic to S satisfies the following: every factor map from T to S is an isomorphism.

Every odometer is coalescent. This fact is proven in [HP68] and [New71]. In these articles, one proves that more
general systems are coalescent and the phenomenon can be generalized in the context of group actions (see [IT16]).
Here we give a short proof for ergodic systems with discrete spectrum.

Theorem 3.4. Every ergodic system with discrete spectrum is coalescent.

Proof of Theoreme 3.4. Let S P AutpX,µq be an ergodic system with discrete spectrum, T P AutpX,µq an
extension of S and Ψ: X Ñ X a factor map from T to S. Let us denote by ES (resp. ET ) the set of all the
eigenfunctions of S (resp. T ). It is easy to check that if fλ is an eigenfunction of S, associated to the eigenvalue
λ P SppSq, then λ is also an eigenvalue of T and fλ ˝Ψ is an associated eigenfunction. Therefore, if S and T are
conjugate, then ergodicity implies that eigenspaces have dimension at most 1 and we get ET “ tf ˝Ψ | f P ESu.
This implies

L2pX,µq “ tf ˝ Ψ | f P L2pX,µqu

since they have discrete spectrum. Hence Ψ is an isomorphism.

For the proof of Theorem A, the systems that we will consider will be an odometer S and an associated odomutant
T (the odomutants are introduced in Section 4). Since the odomutants are extensions of their associated odometer
and since we explicitely know a factor map ψ between them (see Proposition 4.3), Theorem 3.4 will ensure that we
will not build an orbit equivalence between flip-conjugate systems if ψ is not invertible.
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3.1.5 Other properties

Odometers have zero measure-theoretic and topological entropies, and are loosely Bernoulli (see Appendix A for
definitions). This is the consequence of the "poor" dynamic of the odometers (recall that an odometer act on cylin-
ders of the same length in a cyclic way, and that cylinders generate the σ-algebra). The idea behind the construction
of odomutants is to enrich the dynamic, namely to diversify the language with respect to some partitions.

"Informally, note that a loosely Bernoulli system does not necessarily have a "poor" dynamic. For instance,
Bernoulli shifts are loosely Bernoulli.

Proposition 3.5. Odometers have zero measure-theoretic and topological entropies.

Proof of Proposition 3.5. Let S be an odometer. The equality hµpSq “ htoppSq follows from unique ergodicity
and the variational principle. Let Ppkq be the partition given by the cylinders of length k. The odometer S
acts as a cyclic permutation on the elements of Ppkq, so the sequence ppPpkqq

n´1
0 qně1 of partitions is stationary

and we have hµpS,Ppkqq “ 0. Since the product space X “
ś

ně0 t0, 1, . . . , qn ´ 1u is equipped with the
σ-algebra generated by the cylinders, the sequence pPpkqqkě0 increases to the σ-algebra of X, so we have
hµpS,Ppkqq Ñ

kÑ`8
hµpSq by Proposition A.17, and we get hµpSq “ 0.

Proposition 3.6. Odometers are loosely Bernoulli.a

aMore generally, rank-one systems are loosely Bernoulli, this is proven by Ornstein, Rudolph and Weiss [ORW82] (see Lemma
8.1) and we present their proof in the special case of odometers.

Proof of Proposition 3.6. Let S be an odometer, associated to the integers q0, q1, . . ., let Ppkq be the partition
given by the cylinders of length k ` 1. We denote by W the word

`

Sipr0, . . . , 0skq
˘

0ďiďhk´1
P pPpkqqt0,...,hk´1u,

this is the enumeration of the pk ` 1q-cylinders, with the order given by the dynamic of S.
It is easy to check that pS,Ppkqq is loosely Bernoulli, since rPpkqs1,N pxq (the word giving the future) is

completely determined by Ppkqpxq (so by rPpkqs´M,0pxq giving the past) and the possible words in the future
are f -close when N is large enough (they share a subword built as a concatenation of many copies W ).

Since the sequence pPpkqqkě0 increases to the σ-algebra of X, we get that pS,Pq is loosely Bernoulli for every
finite partition P, so S is loosely Bernoulli.

3.2 More complex cutting-and-stacking construction to get various dynamical prop-
erties

As explained before, we want to mutate odometers so that their language with respect to some partitions (e.g.
partition in 1-cylinders) get richer. More precisely, we want these systems to either have more words (in order to
get positive entropy) or to have less predictable laws for the future conditionally to a past (in order not to be loosely
Bernoulli).

To this end, we have to revisit the cutting-and-stacking process defining the odometers, more precisely the way
we connect the columns at each step of the construction. The idea is the following: each column is cutted in
subcolumns, so that a tower at some step is divided in subtowers, and the way we connect the subcolumns of a
same subtower does not necessarily correspond to the dynamic we would have with an odometer. We illustrate it
in Figure 4.

4 Formal definition of odomutants, first properties

4.1 Definition
Let X –

ś

ně0 t0, 1, . . . , qn ´ 1u with integers qn ě 2, and let us recall the notation hn – q0 . . . qn´1. The space X
is endowed with the infinite product topology and we denote by µ the product of the uniform distributions on each

11



An odomutant T associated to S

[3]1

[2]1

[1]1

[0]1

q1 = 3

q2 = 2

[3]1

[2]1

[1]1

[0]1

{[•, 2]2 {[•, 2]2

{[•, 1]2

{[•, 0]2

[•, •, 0]3 [•, •, 1]3

[•, 0]2 [•, 1]2 [•, 2]2 [•, 0]2 [•, 1]2 [•, 2]2
σ
(0)
0 = (0123) σ

(0)
1 = (0213) σ

(0)
0 = (0321)

{[•, 1]2

{[•, 0]2

[•, •, 0]3 [•, •, 1]3
σ
(1)
0 = (012) σ

(1)
1 = (021)

The odometer S on
∏
n≥0

{0, . . . , qn − 1}

q0 = 4

Figure 4: Example of the first two steps in the construction of an odometer (on the left) and an associated odomutant (on the
right). For a permutation σ of the set t0, . . . , k ´ 1u, the notation σ “ pi0 . . . ik´1q means that σ is defined by σpjq “ ij for every
j P t0, . . . , k ´ 1u. The area coloured in purple (resp. orange) is the subset on which S and T are not yet defined at the end of the first
step (resp. second step).
For the odometer, the 1-cylinders are connected in a uniform manner (see the purple arrows), the dynamic on the first tower consists in
going from the bottom to the left. For an associated odomutant, we divide this tower in q1 subtowers r‚, 0s2, . . . , r‚, q1 ´ 1s2 according
to the value of the second coordinate, and the dynamic in each of these subtowers does not necessarily consist in going from the bottom
to the top. In the subtower r‚, 1s2 of this example, the odomutant maps r0, 1s2 to r2, 1s2, which is then mapped to r1, 1s2, which is
finally mapped to r3, 1s2.
At the second step, the odometer connects the subtowers in the following way (see the orange arrows): the end of the subtower associated
to r‚, is2 is mapped to the begining of the subtower associated to r‚, i` 1s2. An odomutant divides these subtowers so that it has many
possibilities to connect them.

t0, 1, . . . , qn ´ 1u. We consider the odometer S : X Ñ X on this space. Recall that it is defined by

Sx “

"

p0, . . . , 0, xi ` 1, xi`1, . . .q if i – min tj ě 0 | xj “ qj ´ 1u is finite
p0, 0, 0, . . .q if x “ pq0 ´ 1, q1 ´ 1, q2 ´ 1, . . .q

,

and it is a µ-preserving homeomorphism.

In this section, we introduce new systems that we call odomutants, defined from S with successive distortions
of its orbits, encoded by the following maps ψ and ψn (for n ě 0).

For every n ě 0, we fix a sequence
´

σ
pnq

i

¯

0ďiďqn`1´1
of permutations of the set t0, 1, . . . , qn ´ 1u, and we
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introduce

ψn :

"

X Ñ X

x “ px0, x1, . . .q ÞÑ pσ
p0q
x1 px0q, σ

p1q
x2 px1q, σ

p2q
x3 px2q, . . . , σ

pnq
xn`1pxnq, xn`1, xn`2, . . .q

.

It is not difficult to see that ψn is a homeomorphism and preserves the measure µ, its inverse is given by

ψ´1
n :

"

X Ñ X
x “ px0, x1, . . .q ÞÑ pz0pxq, z1pxq, . . . , znpxq, xn`1, xn`2, . . .q

with zipxq inductively defined by

znpxq –

´

σ
pnq
xn`1

¯´1

pxnq,

zipxq –

´

σ
piq
zi`1pxq

¯´1

pxiq for every i P t0, 1, . . . , n´ 1u.
(1)

The following computations motivate the definition of odomutants. Let us respectively set the minimal and
maximal points of X:

x´ – p0, 0, 0, . . .q and x` – pq0 ´ 1, q1 ´ 1, q2 ´ 1, . . .q.

We define the following sets
X´
n – tx P X | px0, . . . , xnq “ px´

0 , . . . , x
´
n qu,

X`
n – tx P X | px0, . . . , xnq “ px`

0 , . . . , x
`
n qu,

X´
8 – Xztx´u and X`

8 – Xztx`u.

It is not difficult to see that X`
8 is the increasing union of the sets X`

n , so for every x P X`
8, we denote by N`pxq

the least integer n ě 0 satisfying x P X`
n . This also holds for X´

8 and X´
n , and N´pxq is defined similarly.

Let x P ψ´1pX`
8q and N – N`pψpxqq. By definition of N , for every n ě N , Sψnpxq is equal to

p0, . . . ,0
looomooon

N times

, σNxN`1
pxN q `̀̀ 1, σpN`1q

xN`2
pxN`1q, . . . , σpnq

xn`1
pxnq, xn`1, xn`2, . . .q.

Using (1), we get
ψ´1
n Sψnpxq “ py

pnq

0 pxq, . . . , ypnq
n pxq, xn`1, xn`2, . . .q

with ypnq

i pxq inductively defined by

y
pnq
n pxq –

´

σ
pnq
xn`1

¯´1

pσ
pnq
xn`1pxnqq,

@ N ` 1 ď i ď n´ 1, y
pnq

i pxq –

ˆ

σ
piq

y
pnq

i`1pxq

˙´1

pσ
piq
xi`1pxiqq,

y
pnq

N pxq –

ˆ

σ
pNq

y
pnq

N`1pxq

˙´1

pσ
pNq
xN`1pxN q ` 1q,

@ 0 ď i ď N ´ 1, y
pnq

i pxq –

ˆ

σ
piq

y
pnq

i`1pxq

˙´1

p0q.

By induction, it is easy to get py
pnq

N`1pxq, . . . , y
pnq
n pxqq “ pxN`1, . . . , xnq and this implies the following simplification:

ψ´1
n Sψnpxq is equal to py

pnq

0 pxq, . . . , y
pnq

N pxq, xN`1, xN`2, . . .q with ypnq

i pxq inductively defined by

y
pnq

N pxq –

´

σ
pNq
xN`1

¯´1

pσ
pNq
xN`1pxN q ` 1q,

@ 0 ď i ď N ´ 1, y
pnq

i pxq –

ˆ

σ
piq

y
pnq

i`1pxq

˙´1

p0q.

Finally, py
pnq

0 pxq, . . . , y
pnq

N pxqq does not depend on the integer n ě N`pψpxqq.

Definition 4.1. For every x P ψ´1pX`
8q, let us define

Tx – ψ´1
n Sψnpxq

for any n ě N`pψpxqq. The map T is called the odomutant associated to the odometer S and the sequences
of permutations

´

σ
pnq

i

¯

0ďiďqn`1´1
for n ě 0.

13



4.2 Odomutants as probability measure-preserving bijection
Let us introduce the map

ψ :

#

X Ñ X

x “ px0, x1, . . .q ÞÑ

´

σ
pnq
xn`1pxnq

¯

ně0

,

namely ψpxq “ limnÑ`8 ψnpxq for every x P X. The map ψ is continuous but is not invertible in full generality.
The map ψ also have the following properties.

Proposition 4.2. ψ : X Ñ X preserves the probability measure µ and is onto.

Proof of Proposition 4.2. To prove that µ is ψ-invariant, it suffices to prove the equality µpψ´1pAqq “ µpAq

when A is a cylinder. If A is an pn ` 1q-cylinder, then ψ´1pAq “ ψ´1
n pAq, so the ψ-invariance follows from the

ψn-invariance for all n ě 0.
Given y P X, let us find x P X such that ψpxq “ y. By definition, for every n ě 0, ψpψ´1

n pyqq is in the cylinder
ry0, . . . , ynsn`1, so ψpψ´1

n pyqq Ñ
nÑ`8

y. By compactness, there exists a convergent subsequence of
`

ψ´1
n pyq

˘

ně0
,

of limit x P X, and we have ψpxq “ y since ψ is continuous.

Proposition 4.3. T is a bijection from ψ´1pX`
8q to ψ´1pX´

8q, its inverse is given by

T´1y “ ψ´1
n S´1ψnpyq

for every y P ψ´1pX´
8q and any n ě N´pψpyqq. Moreover T is an element of AutpX,µq and ψ is a factor

map from T to S.

Proof of Proposition 4.3. The equality ψnpTxq “ Sψnpxq implies ψpTxq “ Sψpxq since ψn converges pointwise
to ψ. Moreover, the map ψ preserves the measure µ and is onto (see Proposition 4.2). Thus, assuming that T
is in AutpX,µq, S is a factor of T via the factor map ψ.

T is injective on ψ´1pX`
8q. Indeed, X`

8 is the increasing union of the sets X`
n , and for every n ě 0, T and

ψ´1
n Sψn coincide on X`

n , so the injectivity of T on ψ´1pX`
8q follows from the injectivity of S and the maps ψn

and ψ´1
n .

For x P ψ´1pX`
8q, we have ψpTxq “ Sψpxq and ψpxq “ x`, so ψpTxq is not equal to x´. Conversely, for

y P ψ´1pX´
8q, the element x – ψ´1

n S´1ψnpyq does not depend on the choice of an integer n ě N´pψpyqq (these
are the same computations as before Definition 4.1) and satisfies Tx “ y.

By ψ-invariance, the sets ψ´1pX`
8q and ψ´1pX´

8q have full measure, so T : X Ñ X is a bijection up to
measure zero. It follows again from the properties of S and the maps ψn that T is bimeasurable and preserves
the measure µ.

Since every odometer is coalescent (see Theorem 3.4), we get the following:

Corollary 4.4. Let T be an odomutant built from the odometer S on X “
ś

ně0 t0, . . . , qn ´ 1u and families

of permutations
´

σ
pnq

i

¯

0ďiďqn`1

, for n ě 0. The following assertions are equivalent:

1. T is conjugate to S;

2. ψ : x P X ÞÑ

´

σ
pnq
xn`1pxnq

¯

ně0
P X is an isomorphism;

3. ψ : x P X ÞÑ

´

σ
pnq
xn`1pxnq

¯

ně0
P X is injective almost everywhere.

Question 4.5. Is it possible to find a necessary and sufficient condition on the permutations σpnq

i (for n ě 0 and
0 ď i ď qn`1 ´ 1) for the factor map ψ to be an isomorphism?
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In the proof of Theorem B, for the odomutant to extend to an homeomorphism, the permutations will have
common fixed point: for every n ě 0 and every 0 ď i ď qn`1, we assume σpnq

i p0q “ 0 and σpnq

i pqn ´ 1q “ qn ´ 1. In
this context, we can find a sufficient condition for ψ to be an isomorphism:

Lemma 4.6. For every n ě 0, we set

Fn – txn P t0, . . . , qn ´ 1u | @xn`1 P t0, . . . , qn`1 ´ 1u, σpnq
xn`1

pxnq “ xnu.

If the series
ř |Fn|

qn
diverges, then ψ is an isomorphism between S and T .

So, when |Fn| “ 2 (as in the proof of Theorem B), in order to get an odomutant of positive entropy, we need
the sequence pqnqně0 to increase quickly enough, otherwise we get an odomutant T conjugate to S.

Proof of Lemma 4.6. By the Borel-Cantelli lemma, the set

X0 – tpxnqně0 P X | xn P Fn for infinitely many integers nu

has full measure. It is also S-, T - and ψ-invariant and it is easy to check that ψ : X0 Ñ X0 is a bijection, using
the fact that the equality σpnq

xn`1pxnq “ yn implies xn “ yn when yn is in Fn.

However the condition in Lemma 4.6 is not a necessary condition. Counter example: whatever the sequence
pqnq can be, if for every n ě 0, σpnq

i does no depend on 0 ď i ď qn`1, then ψ is an isomorphism.

4.3 Point spectrum

Theorem 4.7. Let T be an odomutant built from the odometer S on X “
ś

ně0 t0, . . . , qn ´ 1u. Then T and S
have the same point spectrum.

We do not give the proof and refer the reader to the upcoming article about odomutants.
Using Halmos-von Neumann Theorem, we get the following corollary.

Corollary 4.8. Let T be an odomutant built from the odometer S on X “
ś

ně0 t0, . . . , qn ´ 1u. The
following assertions are equivalent:

1. T is conjugate to an odometer;

2. T is conjugate to S.

4.4 Orbit equivalence between odometers and odomutants
In this section, we prove that an odomutant and its associated odometer have the same orbits. Moreover, given a
non-decreasing map φ : R` Ñ R`, we give sufficient conditions for the cocycles to be φ-integrable.
A Given the frightening formulas in Proposition 4.9 and in Condition (C1) of Proposition 4.10, the reader may

first refer to Figure 5 for a schematic view of one of the cocycles.
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{[•, 2]2

{[•, 1]2

{[•, 0]2

[•, •, 0]3 [•, •, 1]3

11

1

1 1

1

-1 -1

33

2 2

2 2

-1 -1

-1 -1

cT = 1

cT = 1 cT = 5

cT = −5

h1

h1

h1

h2

Figure 5: Let us consider the example in Figure 4. The length of the arrows are exactly the value of the cocycle cT :
the numbers in purple (resp. orange) are the values of the cocycle given by the purple (resp. orange) arrows. At
the first step, the odomutant is defined on a subset of X (so of measure ď 1) where |cT | ď h1. At the second step,
we define the odomutant on new points lying in a subset of the purple area (of measure ď 1{h1) where |cT | ď h2,
and so on. Hence Condition (C2) that we will use for Theorems B and C.
Notice that if q1 is very large (so there are many subtowers representing r‚, is2 for 0 ď i ď q1 ´ 1) and if an orange
arrow connects two consecutive towers, then the bound |cT | ď h2 is too coarse. This is the reason why we have the
finer Condition (C1) which will enable us to exploit the sublinearity of the map φ in Theorem A.

Proposition 4.9. For all x P ψ´1pX`
8q, we have Tx “ ScT pxqx where the integer cT pxq is defined by

cT pxq “

N1
ÿ

i“0

hipyipxq ´ xiq (2)

with N1 – N`pψpxqq and y0, . . . , yN1
pxq inductively defined by

yN1
pxq –

´

σ
pN1q
xN1`1

¯´1

pσ
pN1q
xN1`1pxN1

q ` 1q,

@ 0 ď i ď N1 ´ 1, yipxq –

´

σ
piq
yi`1pxq

¯´1

p0q.

For all x P X`
8, let us define the integer cSpxq by:

cSpxq “ hN2

´

σpN2q
xN2`1

p1 ` xN2
q ´ σpN2q

xN2`1
pxN2

q

¯

` hN2´1

´

σ
pN2´1q

1`xN2
p0q ´ σpN2´1q

xN2
pxN2´1q

¯

`

N2´2
ÿ

i“0

hi

´

σ
piq
0 p0q ´ σpiq

xi`1
pxiq

¯ (3)

with N2 – N`pxq. Then we have Sx “ T cSpxqx for every x P X`
8.
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Proof of Proposition 4.9. For x P ψ´1pX`
8q, the value of cT pxq follows from the computations before Defini-

tion 4.1. For x P X`
8 and N2 – N`pxq, we have

x “ pq0 ´ 1, . . . , qN2´1 ´ 1, xN2
loomoon

“qN2
´1

, xN2`1, xN2`2, . . .q and Sx “ p0, . . . , 0, 1 ` xN2 , xN2`1, xN2`2, . . .q,

so for every n ě N2:
ψnpxq “ pσp0q

x1
px0q, . . . , σpN2´1q

xN2
pxN2´1q, σpN2´1q

xN2`1
pxN2

q, . . .q

and ψnpSxq “ pσ
p0q

0 p0q, . . . , σ
pN2´2q

0 p0q, σ
pN2´1q

1`xN2
p0q, σpN2´1q

xN2`1
p1 ` xN2

q, . . .q

and it is straightforward to get φnpSxq “ ScSpxqφnpxq, thus implying Sx “ T cSpxqx.

Theorem 4.10. The map Ψ – idX is an orbit equivalence between T and S. Moreover, given an non-
decreasing map φ : R` Ñ R`, this orbit equivalence is φ-integrable if one of the following two conditions is
satisfied:

(C1) the series

ÿ

ně0

1

hn`2

ÿ

0ďxnďqn´1,
0ďxn`1ďqn`1´1,

σpnq
xn`1

pxnq“qn´1

φ

ˆ

hn

ˆ

1 `

ˇ

ˇ

ˇ

ˇ

´

σpnq
xn`1

¯´1

pσpnq
xn`1

pxnq ` 1q ´ xn

ˇ

ˇ

ˇ

ˇ

˙˙

and
ÿ

ně0

1

hn`2

ÿ

0ďxnďqn´2,
0ďxn`1ďqn`1´1

φ
´

hn

´

1 `

ˇ

ˇ

ˇ
σpnq
xn`1

p1 ` xnq ´ σpnq
xn`1

pxnq

ˇ

ˇ

ˇ

¯¯

converge;

(C2) the series
ř φphn`1q

hn
converges.

Proof of Theorem 4.10. By Proposition 4.9, the set of points x P X satisfying Tx “ ScT pxqx and Sx “ T cSpxqx
for integers cT pxq and cSpxq defined by (2) and (3) have full measure, so the map idX is an orbit equivalence
between S and T .

The value of cT pxq gives the following bound:

|cT pxq| ď hN1

ˇ

ˇ

ˇ

ˇ

´

σpN1q
xN1`1

¯´1

pσpN1q
xN1`1

pxN1q ` 1q ´ xN1

ˇ

ˇ

ˇ

ˇ

`

N1´1
ÿ

i“0

hi |yipxq ´ xi|

looooooooooomooooooooooon

ďhN1

(4)

with N1 “ N`pψpxqq. Given n ě 0, zn P t0, . . . , qn ´ 1u and zn`1 P t0, . . . , qn`1 ´ 1u, we have

µptx P X | N`pψpxqq “ n, xn “ zn, xn`1 “ zn`1uq ď
1

hn`2
.

We finally get
ż

X

φp|cT pxq|qdµpxq

“
ÿ

ně0

ÿ

0ďznďqn´1,
0ďzn`1ďqn`1´1,

σpnq
zn`1

pznq“qn´1

ż

N`
pψpxqq“n,
xn“zn,

xn`1“zn`1

φp|cT pxq|qdµpxq

ď
ÿ

ně0

1

hn`2

ÿ

0ďznďqn´1,
0ďzn`1ďqn`1´1,

σpnq
zn`1

pznq“qn´1

φ

ˆ

hn

ˆ

1 `

ˇ

ˇ

ˇ

ˇ

´

σpnq
zn`1

¯´1

pσpnq
zn`1

pznq ` 1q ´ zn

ˇ

ˇ

ˇ

ˇ

˙˙

.
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From Inequality (4), we also get |cT pxq| ď hN1`1 and the following coarser bound:
ż

X

φp|cT pxq|qdµpxq

“
ÿ

ně0

ÿ

0ďznďqn´1,
0ďzn`1ďqn`1´1,

σpnq
zn`1

pznq“qn´1

ż

N`
pψpxqq“n,
xn“zn,

xn`1“zn`1

φp|cT pxq|qdµpxq

ď
ÿ

ně0

1

hn`2

ÿ

0ďznďqn´1,
0ďzn`1ďqn`1´1,

σpnq
zn`1

pznq“qn´1

φ phn`1q

ď
ÿ

ně0

1

hn
φphn`1q.

For the other cocycle, we have

|cSpxq| ď hN2

ˇ

ˇ

ˇ
σ

pN2q
xN2`1p1 ` xN2

q ´ σ
pN2q
xN2`1pxN2

q

ˇ

ˇ

ˇ

`hN2´1

ˇ

ˇ

ˇ
σ

pN2´1q

1`xN2
p0q ´ σpN2´1q

xN2
pxN2´1q

ˇ

ˇ

ˇ
`

N2´2
ÿ

i“0

hi

ˇ

ˇ

ˇ
σ

piq
0 p0q ´ σpiq

xi`1
pxiq

ˇ

ˇ

ˇ

looooooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooooon

ďhN2

. (5)

with N2 “ N`pxq. Moreover it is easy to get

µptx P X | N`pxq “ n, xn “ zn, xn`1 “ zn`1uq ď
1

hn`2

for every n ě 0, zn P t0, . . . , qn ´ 1u and zn`1 P t0, . . . , qn`1 ´ 1u. Thus we find a bound on the φ-integral of cS
with the same method as cT .

5 Orbit equivalence with almost integrable orbit equivalence cocycles

In this section, we prove that being orbit equivalent to an odometer, with almost integrable cocycles, does not imply
being flip-conjugate to it.

Theorem 5.1 (C.). Let φ : R` Ñ R` be a sublinear map and S an odometer. There exists a proba-
bility measure-preserving transformation T such that S and T are φ-integrably orbit equivalent but not
flip-conjugate.

For Theorems C and B, some invariants (loose Bernoullicity property, entropy) ensure that we build an odomu-
tant T which is not flip-conjugate to the associated odometer S. For Theorem 5.1, we use the following facts

1. ψ : x P X Ñ pσ
p0q
x1 px0q, σ

p1q
x2 px1q, σ

p2q
x3 px2q, . . .q P X is a factor map from an odomutant T to its associated

odometer S;

2. every odometer is coalescent (see Theorem 3.4).

The goal is to find families of permutations
´

σ
pnq
xn`1

¯

0ďxn`1ďqn`1´1
, for n ě 0, such that the factor map ψ is not an

isomorphism, with φ-integrable cocycles for the orbit equivalence between S and T .
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Lemma 5.2. Let pqnqně0 be a sequence of integers greater or equal to 2. For every n ě 0, let
´

σ
pnq
xn`1

¯

0ďxn`1ďqn`1´1
be a family of permutations of the set t0, 1, . . . , qn ´ 1u, defined by:

@xn`1 P t0, . . . , qn`1 ´ 1u, @i P t0, . . . , qn ´ 1u, σpnq
xn`1

piq “ i` xn`1 mod qn.

Assume that the infinite product
ś

ně0

´

1 ´ 1
qn

¯

convergesa. Then ψ : x P X Ñ pσ
pnq
xn`1pxnqqně0 P X is not

injective almost everywhere.

aBy definition, the infinite product
ś

ně0

´

1 ´ 1
qn

¯

converges if the sequence
´

śn
k“0

´

1 ´ 1
qk

¯¯

ně0
converges to a nonzero

real number.

Proof of Lemma 5.2. Idea: Find a partial isomorphism θ which maps every point x of its domain to another
point of ψ´1pψpxqq.

Let Y1 – tx P X | @n ě 0, xn “ pqn ´ 1q1n is evenu and Y2 – tx P X | @n ě 0, xn “ pqn ´ 1q1n is oddu. It is
straightforward to check that

µpY1q “ µpY2q “
ź

ně0

ˆ

1 ´
1

qn

˙

ą 0.

Let θ : X Ñ X defined by:

θpxq – pxn ` p´1qn mod qnqně0.

The map θ is in AutpX,µq since X can be seen as the compact group
ś

ně0 Z{qnZ, with its Haar probability
measure µ and θ as the translation by pp´1qnqně0. Moreover, θ is a bijection from Y1 to Y2 and we have
ψpθpxqq “ ψpxq for all x P Y1.

Let us prove by contradiction that ψ is not injective almost everywhere. Assume that ψ is injective on a
measurable set X0 of full measure. This hypothesis and the equality ψ ˝ θ “ ψ on Y1 imply that the sets X0 and
θpX0 X Y1q are disjoint. This finally gives

µppX0qcq ě µ pθpX0 X Y1qq “ µpX0 X Y1q “ µpY1q ą 0

and we get a contradiction since pX0qc has zero measure.

Before the proof of Theorem A, we use a lemma stated in [CJLMT23] and which enables us to reduce to the case
where the sublinear map φ is non-decreasing (actually the statement is stronger but we only need the monotonicity).

Lemma 5.3 (Lemma 2.12 in [CJLMT23]). Let φ : R` Ñ R` be a sublinear function. Then there is a
sublinear non-decreasing function φ̃ : R` Ñ R` such that φptq ď φ̃ptq for all t large enough.

Proof of Theorem A. Let φ : R` Ñ R` be a sublinear map. If φ̃ is another sublinear map satisfying φptq “

Op ˜φptqq, then φ̃-integrability implies φ-integrability. Therefore, by Lemma 5.3, we assume without loss of
generality that φ is non-decreasing.

Let pqnqně0 be a sequence of integers greater or equal to 2 and S the odometer onX –
ś

ně0 t0, 1, . . . , qn ´ 1u.
Halmos-von Neumann Theorem implies that S is conjugate to the odometer on

ś

ně0 t0, 1, . . . , qin´1
. . . qin´1 ´ 1u

for any increasing sequence pinqně0 satisfying i0 “ 0. Therefore, we can assume without loss of generality that
the integers qn are sufficiently large so that they satisfy the following properties:

1.
ś

ně0

´

1 ´ 1
qn

¯

convergesa;

2. the series
ÿ φp2hnq

hn
converges.
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Let T be the odomutant built from S and the same families
´

σ
pnq
xn`1

¯

0ďxn`1ďqn`1´1
as in Lemma 5.2. By this

lemma and Theorem 3.4, S and T are not conjugate. Since S is conjugate to its inverse S´1 (by Halmos-von
Neumann Theorem), S and T are not flip-conjugate.

It remains to quantify the cocycles, using Condition (C1) of Theorem 4.10. Let n ě 0 and xn`1 P

t0, . . . , qn`1 ´ 1u, and i P t0, . . . , qn ´ 1u such that xn`1 “ i mod qn. For every x P t0, . . . , qn ´ 2uztqn ´ i´ 1u,
we have

´

σpnq
xn`1

¯´1

pσpnq
xn`1

pxnq ` 1q ´ xn “ σpnq
xn`1

p1 ` xnq ´ σpnq
xn`1

pxnq “ 1.

For xn “ qn ´ 1, we consider the following bounds:
ˇ

ˇ

ˇ

ˇ

´

σpnq
xn`1

¯´1

pσpnq
xn`1

pxnq ` 1q ´ xn

ˇ

ˇ

ˇ

ˇ

ď qn

and
ˇ

ˇ

ˇ
σpnq
xn`1

p1 ` xnq ´ σpnq
xn`1

pxnq

ˇ

ˇ

ˇ
ď qn.

We finally get

ÿ

ně0

1

hn`2

ÿ

0ďxnďqn´1,
0ďxn`1ďqn`1´1,

σpnq
xn`1

pxnq“qn´1

φ

ˆ

hn

ˆ

1 `

ˇ

ˇ

ˇ

ˇ

´

σpnq
xn`1

¯´1

pσpnq
xn`1

pxnq ` 1q ´ xn

ˇ

ˇ

ˇ

ˇ

˙˙

“
ÿ

ně0

1

hn`2

ÿ

0ďxnďqn´2,
0ďxn`1ďqn`1´1
xn “qn´i´1

φ

ˆ

hn

ˆ

1 `

ˇ

ˇ

ˇ

ˇ

´

σpnq
xn`1

¯´1

pσpnq
xn`1

pxnq ` 1q ´ xn

ˇ

ˇ

ˇ

ˇ

˙˙

ď
ÿ

ně0

1

hn`2

ÿ

0ďxn`1ďqn`1´1

ppqn ´ 2qφp2hnq ` φphnp1 ` qnqqq

ď
ÿ

ně0

φp2hnq

hn
`

ÿ

ně0

φp2hn`1q

hn`1
ă `8

and similarly

ÿ

ně0

1

hn`2

ÿ

0ďxnďqn´2,
0ďxn`1ďqn`1´1

φ
´

hn

´

1 `

ˇ

ˇ

ˇ
σpnq
xn`1

p1 ` xnq ´ σpnq
xn`1

pxnq

ˇ

ˇ

ˇ

¯¯

ă 8,

so S and T are φ-integrably orbit equivalent.

6 On non-preservation of entropy under almost log-integrable orbit equiv-
alence

We want to prove Theorem B:

Theorem 6.1 (C.). Let S be the universal odometer. Then there exists a Cantor minimal homeomorphism
T such that

1. htoppT q ą 0;

2. there exists a strong orbit equivalence between S and T , which is φm-integrable for all integers m ě 0,

where φm denotes the map t Ñ
log t

logp˝mq t
and logp˝mq the composition log ˝ . . . ˝ log (m times).

This is a weaker version of a more general theorem (see Theorem 2.16).
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6.1 Strong orbit equivalence

Proposition 6.2. Assume that two aperiodic measurable bijections S and T on a Borel space X are orbit
equivalent in the following stronger way: S and T are defined on the whole X and the equality OrbSpxq “

OrbT pxq holds for every x P X.a Then S is uniquely ergodic if and only if T is uniquely ergodic. In this
case, S and T have the same invariant probability measure.

aThis is stronger than asking this property up to a null set.

Proof of Proposition 6.2. Assume that S is uniquely ergodic and denote by µ its only invariant probability
measure. The cocycle cS : X Ñ Z is defined on the whole X and is measurable. Let ν be a T -invariant
probability measure. For every measurable set A, we have

νpSpAqq “
ÿ

kPZ
νpSpAX tcS “ kuqq

“
ÿ

kPZ
νpT kpAX tcS “ kuqq

“
ÿ

kPZ
νpAX tcS “ kuq

“ νpAq,

so ν is S-invariant and is equal to µ. Therefore T is uniquely ergodic and µ is its only invariant probability
measure.

For instance, strong orbit equivalence is a form of orbit equivalence, introduced in a topological framework by
Giordano, Putnam and Skau [GPS95], to which Proposition 6.2 applies. The definition is the following.

Definition 6.3. Two Cantor minimal homeomorphisms pX,Sq and pY, T q are strongly orbit equivalent if
there exists a homeomorphism Ψ: X Ñ Y such that S and Ψ´1TΨ have the same orbits on X and the
associated cocycles each have at most one point of discontinuity.

Boyle proved in his thesis [Boy83] that strong orbit equivalence with continuous cocycles boils down to topo-
logical flip-conjugacy, namely S is topologically conjugate to T or to T´1. As mentioned in the introduction, the
classification up to strong orbit equivalence is fully understood, with complete invariants such as the dimension
group (see [GPS95]).

6.2 Extension to a homeomorphism on the Cantor set

Proposition 6.4. Assume that σpnq

i p0q “ 0 and σpnq

i pqn´1q “ qn´1 for every n ě 0 and every 0 ď i ď qn´1.
Then the odomutant T admits a unique extension which is a homeomorphism on the whole compact set
X “

ś

ně0 t0, 1, . . . , qn ´ 1u. It is furthermore strongly orbit equivalent to the associated odometer S. In
particular, it follows from Proposition 6.2 that T is uniquely ergodic.

Remark 6.5. In this case, the equality S ˝ ψpxq “ ψ ˝ T pxq holds for all x P X.

Proof of Proposition 6.4. Since, for every n ě 0, the points 0 and qn ´ 1 are fixed by the n-th permutations, x´

is the only point x P X satisfying ψpxq “ x´ and x` is the only point x P X satisfying ψpxq “ x`. This implies
that we have

ψ´1pX´
8q “ X´

8 “ Xztx´u and ψ´1pX`
8q “ X`

8 “ Xztx`u,

and T is a bijection from Xztx`u to Xztx´u, so we set Tx` – x´. The map T : X Ñ X is now a well-defined
bijection.

It is not difficult to prove that T is a homeomorphism.

21



By Proposition 4.9, we have Tx “ ScT pxqx and Sx “ T cSpxq for every x P X`
8, with cT pxq and cSpxq defined

by (2) and (3). These relations are extended at x`, with cT pxq “ cSpxq “ 1. Thus S and T have the same orbits
and it is clear that the cocycles are continuous on X`

8 (x` is the only point of discontinuity).2

6.3 Coding map with respect to the partition in 1-cylinders
Topological entropy is often easier to compute than measure-theoretical entropy. In this context, the space X “
ś

ně0 t0, 1, . . . qn ´ 1u is a Cantor set, so it admits open covers which are partitions: the partition in n-cylinders
(for every n ě 0). As explained in Example A.19, when the open cover P that we consider is a partition, then
the minimal cardinal of an open subcover is actually the cardinal of this partition, so the entropy of a topological
system T with respect to P exactly consists in studying the asymptotical behaviour of the cardinality of

Pn´1
0 –

n´1
ł

i“0

T´ipPq

Moreover, the cardinality of Pn´1
0 is the number of words pP0, . . . , Pn´1q such that there exists x P X satisfying

x P P0, Tx P P1, . . . , T
n´1x P Pn´1, namely the cardinality of trPsnpxq | x P Xu where rPsnpxq has been defined in

Section A.3.
So we only have to count words ! Figure 6 summarizes Lemmas 6.6 and 6.7.

[3]1

[2]1

[1]1

[0]1

[•, 0]2 [•, 1]2 [•, 2]2
σ
(0)
0 = (0123) σ

(0)
1 = (0213) σ

(0)
0 = (0321)

W
(1)
0 = 0123, W

(1)
1 = 0213, W

(1)
2 = 0321

(h1-words from [0]1)

{[•, 2]2

{[•, 1]2

{[•, 0]2

[•, •, 0]3 [•, •, 1]3
σ
(1)
0 = (012) σ

(1)
1 = (021)

W
(2)
0 = W

(1)
0 ·W (1)

1 ·W (1)
2

= 0123 0213 0321
,

W
(2)
1 = W

(1)
0 ·W (1)

2 ·W (1)
1

= 0123 0321 0213

(h2-words from [0, 0]2)

Figure 6: Words obtained from the bottom of the towers, with respect to the partition in 1-cylinders (a letter i in
a word corresponds to the 1-cylinder ris1).
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Lemma 6.6. Let T be an odomutant built from an odometer S and permutations fixing 0. Let P be the
partition in 1-cylinders. For every n ě 0, for every xn P t0, 1, . . . , qn ´ 1u, the set

trPshn
pxq | x P r0, . . . , 0, xnsn`1u

is a singleton, denoted by tW
pnq
xn u.

Proof of Lemma 6.6. Let x P r0, . . . , 0, xnsn`1. We can write x “ p0, . . . , 0
loomoon

n times

, xn, xn`1, . . .q. All the permutations

fix 0, so for every i ě n´ 1, we have

ψipxq “ p0, . . . , 0
loomoon

n times

, σpnq
xn`1

pxnq, . . . , σpiq
xi`1

pxiq, xi`1, xi`2, . . .q.

For k P t0, 1, . . . , hn ´ 1u, let pk0, k1, . . . , kn´1q be the n-tuple in
ś

0ďiďn´1 t0, 1, . . . , qi ´ 1u satisfying k “

k0 ` h1k1 ` . . .` hn´1kn´1. We then have

Skψipxq “ pk0, k1, . . . , kn´1, σ
pnq
xn`1

pxnq, . . . , σpiq
xi`1

pxiq, xi`1, xi`2, . . .q

so T kx is equal to py
pkq

0 , . . . , y
pkq

n´1, xn, xn`1, . . .q where ypkq

i defined by

y
pkq
n “ xn,

for 0 ď i ď n´ 1 y
pkq

i “

ˆ

σ
piq

y
pkq

i`1

˙´1

pkiq.

For every k P t0, 1, . . . , hn ´ 1u, py
pkq

0 , . . . , y
pkq

n´1q does not depend on xn`1, xn`2, . . . and only depends on xn, so
does the hn-tuple py

pkq

0 q0ďkďhn´1. The result follows from the fact that rPshn
pxq is equal to py

pkq

0 q0ďkďhn´1.

Lemma 6.7. Let T be an odomutant built from an odometer S and permutations fixing 0. Let P be the
partition in 1-cylinders, and recall the words W pnq

xn defined in Lemma 6.6. For every n ě 1 and xn P

t0, 1, . . . , qn ´ 1u, we have

W pnq
xn

“ W
pn´1q

0 ¨W
pn´1q
´

σ
pn´1q
xn

¯´1
p1q

¨ . . . ¨W
pn´1q
´

σ
pn´1q
xn

¯´1
pqn´1´2q

¨W
pn´1q
´

σ
pn´1q
xn

¯´1
pqn´1´1q

.

Proof of Lemma 6.7. Given n ě 0, note that we have

t0, 1, . . . , hn ´ 1u “
ğ

0ďiďqn´1´1

´

t0, 1, . . . , hn´1 ´ 1u ` hn´1i
¯

.

Moreover if i is in t0, 1, . . . , qn´1 ´ 1u, if xn is in t0, 1, . . . , qn ´ 1u, we have

Thn´1ipr0, . . . , 0, 0, xnsn`1q “ r0, . . . , 0,
´

σpn´1q
xn

¯´1

piq, xnsn`1.

This implies that, for a fixed x P r0, . . . , 0, 0, xnsn`1, the element yi :“ Thn´1ipxq is in r0, . . . , 0,
´

σ
pn´1q
xn

¯´1

piqsn

and we get

whn´1i,hn´1pi`1q´1pxq “ whn´1
pThn´1ipxqq “ whn´1

pyiq “ W
pn´1q
´

σ
pn´1q
xn

¯´1
piq

by Lemma 6.6. Finally the hn-word on x is the following concatenation :
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W pnq
xn

“ whn
pxq

“ w0,hn´1pxq

“ w0,hn´1´1pxq ¨ whn´1,2hn´1´1pxq ¨ . . . ¨ whn´1pqn´1q,hn´1pxq

“ W
pn´1q
´

σ
pn´1q
xn

¯´1
p0q

¨W
pn´1q
´

σ
pn´1q
xn

¯´1
p1q

¨ . . . ¨W
pn´1q
´

σ
pn´1q
xn

¯´1
pqn´1´2q

¨W
pn´1q
´

σ
pn´1q
xn

¯´1
pqn´1´1q

“ W
pn´1q

0 ¨W
pn´1q
´

σ
pn´1q
xn

¯´1
p1q

¨ . . . ¨W
pn´1q
´

σ
pn´1q
xn

¯´1
pqn´1´2q

¨W
pn´1q
´

σ
pn´1q
xn

¯´1
pqn´1´1q

and we are done.

6.4 Proof of the theorem

Lemma 6.8. Same assumptions. We also assume that for every n ě 0, the permutations
σ

pnq

0 , σ
pnq

1 , . . . , σ
pnq

qn`1´1 are pairwise different. Then for every n ě 0, the map

xn P t0, 1, . . . , qn ´ 1u ÞÑ W pnq
xn

is injective.

Proof of Lemma 6.8. Let us prove it by induction. The result is clear for n “ 0. Given n ě 1, assume that the
map

xn´1 P t0, 1, . . . , qn´1 ´ 1u ÞÑ W pn´1q
xn´1

is injective. By Lemma 6.7, this means that there exists a bijection between the set of words tW
pnq
xn | xn P

t0, 1, . . . , qn ´ 1uu and the set of permutations tσ
pn´1q
xn | xn P t0, 1, . . . , qn ´ 1u, and the result follows from the

fact that the map xn ÞÑ σ
pn´1q
xn is injective.

Now let us assume that the map
"

t0, 1, . . . , qn`1 ´ 1u Ñ tσ P Sympt0, 1, . . . , qn ´ 1uq | σp0q “ 0 and σpqn ´ 1q “ qn ´ 1u

xn`1 ÞÑ σ
pnq
xn`1

is a bijection. In particular, qn`1 “ pqn ´ 2q!.
Let us introduce the sequence pppvnqqqně0 defined by

vn “
log qn
hn

.

Lemma 6.9. The sequence pvnqně0 is bounded below by v0 ´6. If q0 is sufficiently large, then the odomutant
T has positive topological entropy.

Proof of Lemma 6.9. First we have

log qn “ log ppqn´1 ´ 2q!q “ log ppqn´1q!q ´ log qn´1 ´ log pqn´1 ´ 1q ě log ppqn´1q!q ´ 2qn´1.

Using log pk!q ě k log k ´ k, we get

log qn ě qn´1 log qn´1 ´ 3qn´1.

Using hn “ hn´1qn´1, we get

vn ě vn´1 ´
3

hn´1
.
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Finally, we have the following lower bound

vn ě v0 ´ 3
ÿ

iě0

1

hi
.

The integer hi is greater or equal to 2i, so we get vn ě v0 ´ 6 “ log pq0q ´ 6.
By Lemma 6.8, we have

logN
´

pPq
hn´1
0

¯

hn
ě

log qn
hn

“ vn.

This implies htoppT q ě log pq0q ´ 6. If q0 is sufficiently large, it gives htoppT q ą 0.

Lemma 6.10. The sequence pvnq is bounded above.

Proof of Lemma 6.10. Using log pk!q ď k log k, we get

vn`1 “
log qn`1

hn
ď

log pqn!q

hn
ď
qn log qn
hn

“
qn log qn
qnhn´1

“ vn.

Thus we have vn ď v0 for every n ě 0.

Lemma 6.11. For all integers m ě 0, the sequence
´

1
ln˝mpqnq

¯

ně0
is summable.

Proof of Lemma 6.11. Let us consider an integer N such that

@n ě N, pv0 ´ 6qhn ě 1.

For every n ě N , using Lemma 6.9, we have

log qn`1 “ hn`1vn`1 ě qn ˆ pv0 ´ 6qhn ě qn.

By induction, we easily get for every n ě N ,

log˝m
pqn`mq ě qn

The summability is now clear since the sequence pqnqně0 satisfies the relation qn`1 “ pqn ´ 2q!.

Proof of Theorem B. With a sufficiently large integer q0 such that the conclusion of Lemma 6.9 holds, and
with the sequence pqnqně0 defined by the relation qn`1 “ pqn ´ 2q!, we have built an odomutant T of positive
topological entropy from the odometer S on the space

ś

ně0 t0, 1, . . . , qn ´ 1u. By Proposition 6.4, the orbit
equivalence built between T and S is a strong orbit equivalence. The recurrence relation on the sequence pqnq

implies that S is the universal odometer (every prime number p appear infinitely many time as a prime factor
of the integers q0, q1, . . .).

Finally, with the sequence phnqně0 defined by h0 “ 1 and hn`1 “ hnqn, the orbit equivalence is φ-integrable
if pφphn`1q{hnqn is summable, by Theorem 4.10 (see Condition (C2)). This holds for φpxq “

logpxq

log˝mpxq
, since we

have

φphn`1q

hn
“

1

log˝m
phn`1q

log phn`1q

hn
ď

1

log˝m
pqnq

ˆ

log phnq

hn
` vn

˙

ď
1

log˝m
pqnq

p1 ` vnq

and by Lemmas 6.11 and 6.10.
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7 On non-preservation of Kakutani equivalence under Lă1{2 orbit equiv-
alence

In this section, we sketch the proof of Theorem C that we recall:

Theorem 7.1 (C.). There exists an ergodic probability measure-preserving bijection T which is Lă1{2 orbit
equivalent (in particular Shannon orbit equivalent) to the dyadic odometer but not evenly Kakutani equivalent
to it.

Feldman [Fel76] has built a zero-entropy system which is not loosely Bernoulli. It turns out that we can describe
this system as an odomutant built from the dyadic odometer, with parameters given by:

qn “ p2n`10q2
n`12

`3,

and permutations that we will not specify. It is not difficult to check that the series
ř φphn`1q

hn
converges for the

map φpxq “ xp with p ă 1{2, so the orbit equivalence is Lă1{2 by Proposition 4.10.

Remark 7.2. In the construction of Feldman, the elements in r0, . . . , 0sn produce hn-words (with respect to
the partition in 1-cylinders), describing the future, which are not pairwise f -close for the f -metric introduced in
Section A.5 (therefore, the underlying system is not loosely Bernoulli). As an example, if the pieces of the partition
are labelled with letters a and b, we want the elements of r0, 0s2 to each describe h1-words of the form

abababab . . . abababab,
aabbaabb . . . aabbaabb,
aaaabbbb . . . aaaabbbb, . . .

(note that they are not pairwise f -close) in such a manner that each r0, 0, is2 describes only one of these words and
the (deterministic) laws for the futur cannot have pairwise good couplings. We continue this way for the second
step, replacing letters by the new words built above.
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A Background from ergodic theory

A.1 Ergodicity, mixing properties

Definition A.1. Let T P AutpX,µq. We say that a measurable subset A ofX is T -invariant if µpA∆T pAqq “

0.
T is ergodic if every T -invariant measurable subset is null or conull.

This is the definition of T -invariance in the simpler case of invertible transformations (when T is not invertible,
A is T -invariant if µpA∆T´1pAqq “ 0).

If a set A satisfies A “ T pAq, then for all points x P A, its T -orbit is contained in A. This means that A is a
union of orbits. In the case A is T -invariant, then A is a union of orbits up to zero measure. Therefore, ergodicity
means that a measurable property only concerning the orbits is null or conull. For instance, given some measurable
subset B, the property "there exist infinitely many positive integers n such that Tnx lies in B" is satisfied for x if
and only if it is satisfied for T kx for every k P Z, so it is a property on the orbits.

A stronger property than ergodicity is the weak mixing property.

Definition A.2. T P AutpX,µq is weakly mixing if for every measurable subsets A and B, the following
holds:

1

n

n
ÿ

i“0

ˇ

ˇµpT´ipAq XBq ´ µpAqµpBq
ˇ

ˇ ÝÑ
nÑ`8

0.

Lemma A.3. Strong mixing property is stronger than ergodicity.

Proof. Let A be a T -invariant measurable set. Applying the weak mixing property to B “ A, we get µpAq “

µpAq2, so µpAq is either equal to 1 or to 0.

Definition A.4. T is strongly mixing if for every measurable subsets A and B, the following holds:
ˇ

ˇµpT´npAq XBq ´ µpAqµpBq
ˇ

ˇ ÝÑ
nÑ`8

0.

Weak mixing property is a "Cesaro" version of strong mixing property, we deduce from this that strong mixing
property is... stronger!

A.2 Point spectrum
Remark A.5. Given a measurable subset A and T P AutpX,µq, we have 1A ˝ T “ 1T´1pAq, so an equivalent
definition of ergodicity is that every T -invariant characteristic function (seen as element of L2pX,µq) is either 1X
or 1.

For every measurable subset C, we have µpCq “
ş

X
1Cdµ. so the quantity µpT´ipAqXBq´µpAqµpBq appearing

in the definitions of weakly and strongly mixing can be written as
ż

X

`

1A ˝ T i
˘

1Bdµ´

ż

X

1Aµ

ż

X

1Bµ “

ż

X

ˆ

1A ˝ T i ´

ż

X

1Aµ

˙ ˆ

1B ´

ż

X

1Bµ

˙

dµ,

where the maps 1A ˝ T i ´
ş

X
1Aµ and 1B ´

ş

X
1Bµ have zero integral.

This remark leads us to the following functional viewpoint for all the properties introduced in the last section:
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Definition A.6. • T is ergodic if every T -invariant function of L2pX,µq is constant almost everywhere.

• T is weakly wixing if for every f, g P L2pX,µq of zero integral, we have

1

n

n
ÿ

i“0

ż

X

`

f ˝ T i
˘

gdµ ÝÑ
nÑ`8

0

• T is strongly wixing if for every f, g P L2pX,µq of zero integral, we have
ż

X

pf ˝ Tnq gdµ ÝÑ
nÑ`8

0

Then it is natural study the unitary operator

UT : f P L2pX,µq Ñ f ˝ T P L2pX,µq,

called the Koopman operator of T (it is unitary since µ is T -invariant). For example, we can look at its point
spectrum.

Definition A.7. We say that λ P C is an eigenvalue of T if there exists f P L2pX,µqzt0u such that f˝T “ λf .
The function f is called an eigenfunction of T . Since UT is unitary, λ is in the unit torus T.

Example A.8. The constants functions are always eigenfunctions associated to the eigenvalue 1.

Lemma A.9. Two eigenfunctions associated to distinct eigenvalues are orthogonal.

Proof. Let f1, f2 P L2pX,µq be eigenfunctions respectively associated to the eigenvalues λ1, λ2. Using the fact
that the Koopman operator is unitary, we get:

xf1, f2y “ xUT f1, UT f2y “ xλ1f1, λ2f2y “ λ1λ2xf1, f2y.

Since λ1 and λ2 are different points of the unit torus U, we get λ1λ2 “ 1, so xf1, f2y “ 0.

Example A.10. 1. Let θ be an irrational number, and Rθ : z P U ÞÑ z exp p2iπθq P U be the irrational rotation
of angle θ. For every n ě 0, the map z P U Ñ zn P U is an eigenfunction of Rθ associated to the eigenvalue
exp p2inπθq. By Fourier analysis, the span of all the eigenfunctions of Rθ is dense in L2pUq, so the point
spectrum of the Rθ is exactly texp p2inπθq | n P Zu.

2. Given a sequence pqnqně0 of integers greater than or equal to 2, and S the odometer onX “
ś

ně0 t0, 1, . . . , qn ´ 1u,
its point spectrum is exactly

SppSq “

"

exp

ˆ

2iπk

hn

˙

| n ě 1, 0 ď k ď hn ´ 1

*

.

where hn – q0 . . . qn´1. Indeed, it is straightforward to check that fλ : x P X ÞÑ
řhn´1
j“0 λj1Sjpr0,...,0snqpxq

is an eigenfunction associated to λ “ exp
´

2iπk
hn

¯

. Moreover, the span of all the eigenfunctions is dense in

L2pXq, since a linear combination
řhn´1
ℓ“0 aℓfλℓ is of the form

řhn´1
j“0 P pλjq1Sjpr0,...,0snq with the polynomial

P “ a0 ` a1Y ` . . .` ahn´1Y
hn´1, and good choices of P yield the characteristic functions of the n-cylinders.

Remark A.11. Since we can write f “
`

f ´
ş

X
fdµ

˘

`
ş

X
fdµ, the Hilbert space L2pX,µq has the following

orthogonal decomposition:
L2pX,µq “ L2

0pX,µq ‘ C,

where L2
0pX,µq and C are respectively the closed subspaces of zero-integral functions and constant functions. These

subspaces are stabilized by UT . Since the constant functions are always eigenfunctions of T (associated to the
eigenvalue 1), it is usually relevant to only study the restriction of UT on L2

0pX,µq (Koopman reduced operator).
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We can thus reformulate some dynamical properties this way:

Proposition A.12. • T is ergodic if and only if the constant functions are the only eigenfunctions
associated to the eigenvalue 1 (equivalently, the eigenvalue 1 is simple).

• If T is ergodic, then it is weakly mixing if 1 is the only eigenvalue.

Corollary A.13. Odometers are not weakly mixing.

Let us define a particular class of systems.

Definition A.14. A system has discrete spectrum if the span of all its eigenfunctions is dense in L2pX,A, µq.

Example A.15. In Example A.10, we got two examples of discrete-spectrum systems:

1. irrational rotations (by Fourier analysis on the unit torus U);

2. odometers.

The following result, due to Halmos and von Neumann, provides a classification of ergodic discrete-spectrum
systems up to conjugacy.

Theorem A.16 (Halmos, von Neumann [HVN42]). Two ergodic systems of discrete spectrum are conjugate
if and only if they have the same point spectrum.

This is also a classification up to flip-conjugacy since the point spectrum is symmetric.

A.3 Measurable partitions, entropy
Measurable partition A set P of measurable subsets of X is a measurable partition of X if:

• for every P1, P2 P P, we have µpP1 X P2q “ 0;

• the union
Ť

PPP P has full measure.

The elements of P are called the atoms. If P and Q are measurable partitions of pX,µq, we say that P refines
(or is a refinement of, or is finer than) Q, denoted by P ě Q, if every atom of Q is a union of atoms of P (up to a
null set). More generally, their joint partition is

P _ Q – tP XQ | P P P, Q P Qu,

namely the least fine partition which refines P and Q. This operation _ is associative.
A measurable partition P defines almost everywhere a map Pp.q : X Ñ P where Ppxq is the atom of P which

contains x. Given a measurable map T : X Ñ X, P provides coding maps

rPsi,n : x P X ÞÑ pPpT jxqqiďjďn P Pti,...,nu.

In particular, rPsnpxq – rPs0,n´1pxq is the n-word of x.
Given atoms Pi, Pi`1, . . . , Pn of P, the equality rPsi,npxq “ pPi, . . . , Pnq exactly means that x is an element of

T´ipPiq X T´pi`1qpPi`1q X . . . X T´npPnq. Therefore the partition which gives the values of rPsi,n is the following
joint partition

Pni –

n
ł

j“i

T´jpPq

with T´jpPq – tT´jpP q | P P Pu, this is a division of the space given by the dynamic of T , over the timeline
ti, . . . , nu and with respect to P.
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Entropy of a partition If P “ tP1, P2u is a partition of X with two atoms of equal measure, and Q “ tQ1, Q2u

is another partition of cardinality 2, such that µpQ1q “ 0, 9999, then P brings more information than Q. Given a
random variable x with law µ, the answer to the question "In which atom is x ?" is of more interest for P since it
is uncertain. We want a function (called entropy) from the set of measurable partitions to R` which quantify the
uncertainty of the answer, or how much a partition divides the space.

First, we define the information function I from the measurable function to R`, such that, given a random
variable x with law µ, IpP q quantifies how much it is surprising to find out that x lies in P . We heuristically get
the following axioms:

• IpXq “ 0;

• IpHq “ `8;

• IpP q “ fpµpP qq for a decreasing map f ;

• if A and B are independant, then IpAXBq “ IpAq ` IpBq.

The map f is necessarily ´ log (up to a multiplicative constant), so we define

IpP q – ´ logµpP q.

Then we define the information function of a partition P as

IP –
ÿ

PPP
IpP q1P : X Ñ R`

and the entropy is the mean of this function:

HµpPq –

ż

X

IPpxqdµpxq “ ´
ÿ

PPP
µpP q logµpP q P R`.

A well-known result states that, given an positive integer n, the maximum ofHµ on the set of partitions of cardinality
n is reached on the uniform partitions, so this is the notion of entropy we were looking for at the beginning of the
paragraph.

A.4 Measure-theoretic entropy, topological entropy
Here we present two notions of entropy. For more details, the reader may refer to [Dow11] and [KL16].

Measure-theoretic entropy. Entropy, or measure-theoretic entropy, or metric entropy, of a measurable trans-
formation is an invariant of conjugacy. To define it, we first define the entropy of a partition, which then enables
us to quantify how much a transformation complexifies the partitions.

Let T be a system on pX,µq, not necessarily invertible, and P a finite measurable partition of X. The following
quantity

hµpT,Pq – lim
nÑ`8

HµpPn´1
0 q

n

is well-defined, this is the entropy of T with respect to P, and it tells us how quickly the dynamic of T is
dividing the space X with the partition P. Finally, let us define the entropy of T by

hµpT q – sup
P

hµpT,Pq,

where the supremum is over all the finite measurable partitions P of X. This quantity is non-negative and can be
infinite.

The following result enables us to prove that the odometers have zero entropy (see Proposition 3.5).

Proposition A.17. If pPkqkě0 is a sequence of partitions which increases to the σ-algebra of X, then we
have

hµ pT,Pkq Ñ
kÑ`8

hµpT q.
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Topological entropy. In the topological setting, topological entropy is an invariant of topological conjugacy and
is defined with similar ideas.

The topological space X has to be compact. We define the joint cover of two open covers U and V by

U _ V – tU X V | U P U , V P Vu.

This is an associative operation. Let T be a topological system on X and U an open cover of X. Let us define

Un´1
0 –

n´1
ł

i“0

T´ipUq,

where T´ipUq – tT´ipUq | U P Uu, and

N pUq – mint|U 1| | U 1 is a subcover of Uu,

where |U 1| denotes the cardinality of U 1. The quantity N pUq is finite since X is compact.
The topological entropy of T with respect to the open cover U is the well-defined limit

htoppT,Uq – lim
nÑ`8

logN pUn´1
0 q

n
,

it tells us how quickly the dynamic of T is shrinking the open sets of U .
Finally, let us define the topological entropy of T by

htoppT q – sup
U

htoppT,Uq,

where the supremum is over all the open covers U of X. This quantity is non-negative and can be infinite.
We say that a sequence pUnqně0 of open covers generates the topology on X if for every ε ą 0, there exists

N ě 0 such that for every n ě N , the open sets of Un has a diameter less than ε. The following statement is an
topological version of Proposition A.17.

Proposition A.18. Let T be a topological system on X and pUnqně0 a generating sequence of open covers.
Then we have

htoppT q “ lim
nÑ`8

htoppT,Unq.

Example A.19. The compact space X that we consider in these notes is of the form

X –
ź

ně0

t0, 1, . . . , qn ´ 1u,

with integers qn greater or equal to 2. It admits open covers which are partitions in clopen sets. If U is such an
open cover, then Un´1

0 denotes both joint of open covers and joint of partitions. We have N pUn´1
0 q “ |Un´1

0 ztHu|

and this is exactly the number of words of the form rUsnpxq, for x P X, where rUsn is the coding map associated
to the partition U (see Section A.3). Therefore, in the proof of Theorem B, a method to create topological entropy
consists in building a system T whose number of n-words (with respect to some partition in clopen sets) increases
quickly enough as n goes to 8.

The variational principle. In Example A.19, we explain the method that we will apply in this paper to create
topological entropy and then prove Theorem B (or more generally Theorem 2.16). However we also would like to
prove the same statement in a measure-theoretical setting (see Theorem 2.15). The variational principle enables us
to connect topological and measure-theoretical entropies, and to get Theorem 2.15 as a Corollary of Theorem 2.16
(if unique ergodicity holds).

Theorem (Variational principle). Let T : X Ñ X be a topological system on a metric compact set X. Then
we have

htoppT q “ sup
µ

hµpT q

where the supremum is over all T -invariant Borel probability measures µ on X.
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As a consequence, if T is uniquely ergodic, then we have

htoppT q “ hµpT q,

where µ denotes the only T -invariant Borel probability measure.

A.5 Even Kakutani equivalence, loose Bernoullicity
The notions introduced in this section can be found in [Fel76] and [ORW82].

Let T P AutpX,µq. Given a measurable set A, the return time rA : A Ñ N˚ Y t8u is defined by:

@x P A, rApxq – inf tk ě 1 | T kx P Au.

It follows from Poincaré recurrence theorem that, if A has positive measure, then the set tk P N˚ | T kx P Au is
infinite for almost every x P A. In particular, rApxq is finite for almost every x P A.

Then we can define a transformation TA on the set tx P A | rApxq ă 8u, namely on A up to a null set, called
the induced tranformation on A:

TAx – T rApxqx.

The map TA is an element of AutpA,µAq, where µA – µp.q{µpAq is the conditional probability measure. Its entropy
is given by Abramov’s formula:

hµA
pTAq “

hµpT q

µpAq
.

Definition A.20. Let S P AutpX,µq, T P AutpY, νq be two ergodic transformations.

1. T and S are said to be Kakutani equivalent if TA and SB are isomorphic for some measurable sets
A Ă X and B Ă Y .

2. Moreover they are evenly Kakutani equivalent if in addition two such measurable sets have the
same measure: µpAq “ νpBq.

It is well-known that Kakutani equivalence and even Kakutani equivalence are equivalence relations. It follows
from Abramov’s formula that entropy is preserved under even Kakutani equivalence.

Similarly to Ornstein’s theory [Orn70] for the conjugacy problem, Ornstein, Rudolph and Weiss [ORW82] found
a class of systems, called loosely Bernoulli system, where Kakutani and even Kakutani equivalences are well under-
stood. These systems were first introduced by Feldman [Fel76].

Definition A.21 (see [Fel76]). • The f -metric between words of same length is defined by:

fnppaiq1ďiďn, pbiq1ďiďnq “ 1 ´
k

n

where k is the greatest integer for which we can find equal subsequences paiℓq1ďℓďk and pbjℓq1ďℓďk,
with i1 ă . . . ă ik and j1 ă . . . ă jk.

• Let T P AutpX,µq and P be a partition of X. The couple pT,Pq, called a process, is loosely Bernoulli
if for every ε ą 0, for every sufficiently large integer N and for each M ą 0, there exists a collection G
of "good" atoms in P0

´M whose union has measure greater than 1 ´ ε, and so that for each pair A,B
of atoms in G, the following holds: there is a measure nA,B on PN ˆ PN satisfying

1. nA,BptP u ˆ PN q “ µAptrPs1,N p.q “ P uq for every P P PN ;

2. nA,BpPN ˆ tP uq “ µBptrPs1,N p.q “ P uq for every P P PN ;

3. nA,BptpP, P 1q P PN ˆ PN | fN pP, P 1q ą εuq ă ε.

• T is loosely Bernoulli if pT,Pq is loosely Bernoulli for all finite partitions P of X.
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Loose Bernoullicity for a process pT,Pq expresses the fact that, conditionally to two pasts A and B, the laws for
the future are close, meaning that there exists a good coupling between them, with close words for the f -metric.

Proposition A.22. Let T P AutpX,µq.

1. If P is a generating partition and if pT,Pq is loosely Bernoulli, then T is loosely Bernoulli.

2. If pPkq is a sequence of partitions increasing to the σ-algebra of X, and if pT,Pkq is loosely Bernoulli
for every k, then T is loosely Bernoulli.

Example A.23. 1. The Bernoulli shift on t1, . . . , kuZ is loosely Bernoulli with respect to the partition tr1s1, . . . , rks1u.
Indeed, conditionally to every past, the law for the N -word is always the uniform distribution on t1, . . . , kuN .
This system is more generally loosely Bernoulli since tr1s1, . . . , rks1u is a generating partition.

2. Odometers are loosely Bernoulli (see Proposition 3.6).

The choice of the metric is very important. Indeed, with the d-metric:

dnppaiq1ďiďn, pbiq1ďiďnq “ |t1 ď i ď n | ai “ biu|,

also called the Hamming distance, we get the notion of very weakly Bernoulli systems and this is exactly the class
considered in Ornstein’s theory for the conjugacy problem.

As mentioned above, Kakutani equivalence and even Kakutani equivalence are well understood in the class of
loosely Bernoulli systems.

Theorem (see Theorems 5.1 and 5.2 in [ORW82]). Let S P AutpX,µq, T P AutpY, νq be two ergodic
transformations.

1. If S is loosely Bernoulli and is Kakutani equivalent to T , then T is also loosely Bernoulli.

2. If S and T are loosely Bernoulli, then they are evenly Kakutani equivalent if and only if they have the
same entropy.
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