

A grasi-isometric classification of permutational wreath products

Starting point: a finitely group
$$G = \langle S \rangle$$

is a methic Apace, so which other
methic space is gnasi-isomethic to G ?
Or given G , H , is there a $Q.I. G \rightarrow H$?
Definition: A map $f: (X, d_X) \rightarrow (Y, d_Y)$
is a quasi-isometry if there are $C \ge 1$,
 $K \ge O$ such that:
(i) $\frac{1}{C} d_X(X,Y) - K \le d_Y(f(X), f(Y))$
 $\le C d_X(X,Y) + K \quad \forall X, Y \in X.$

(ii) $d_{Y}(y, f(x)) \leq K$ $\forall y \in Y$. Equivalently, f satisfies (i) and $\exists g: Y \rightarrow X$ Such that $d(g \circ f, Id_{X}), d(f \circ g, Id_{Y}) \leq K$ Such that $d(g \circ f, Id_{X}), d(f \circ g, Id_{Y}) \leq K$ Such that $d(g \circ f, Id_{X}), d(f \circ g, Id_{Y}) \leq K$

Remark: Being quasi-isometric is an equivalence relation between metric spaces. What is known about the Q.I. rigidity of amenable groups? Definition: • G is Q.I. rigid if any group Q.I. to G is isomorphic to a finite index subgroup of G, or to a quotient of G by a finite normal subgroup may around.) ·A class & of groups is Q.I. ngid if any gr-up Q.I. to a group GEE is ison. to a f. i. Subgroup or to a quotient by a finite subgroup of some G'EE. Theorem: Vhz1, Zh is Q.I. rigid. Theoren (Farb-Mosher 1999, 2000): 4121, the Bannslag - Solitar group

BS(1,n) = <a,t | tat' = an > is Q.I. rigid. Moreover, BS(1,n) and BS(1,m) are Q.I. iff n, m are powers of a common number. Open questions: • Is the class of finitely presented solvable groups Q.I. rigid?

- . Is the class of f.p. metabelion groups Q.I. rigid ?
- Is it true that being polycyclic is a
 B.I. invariant?

Wreath products

Given groups G, H, define $G \downarrow H := (\bigoplus_{H} G) \rtimes H$ where H acts on $\bigoplus_{H} G$ by permiting the

coordinates. In addition, if G = <SG> and H = <SH> then G2H is generated by $\{S_a : a \in S_G \} \cup S_H$ where $S_a : H \rightarrow G$, $h \mapsto \{I_G \text{ otherwise}\}$. Thus, if we think (c,p) E GIH as a colouring of (the Caryley graph of) H with colors in G, finitely supported, together with an arrow pEH, then right multiplying (gp) by a generator amounts · either to keep the same colouring and moving the arrow to a neighbour

 $q = ps \circ f p$: $(c,p)\cdot(\Lambda I,s) = (c,ps), s \in S_H$.

11

_

When X = Cay (H,S), then Zn(X) is the Cayley graph of 422H with respect to the generating set the US. Given a colouring c: V(X) -> Zn, the set $L(c) = \{(c,p) \in \mathcal{Z}_{h}(x) : p \in V(x)\}$ is called a leaf. Remark: in F2H, leaves are just $H - cosets : L(c) = (c, 1_H) \cdot H.$ in F2H L dH p move vertically: moves of the second kind. <u>CH</u> <u>P</u> move horizontally : moves of the first kind

Theorem (2024): let Fr. Fz be two non hivial finite groups. Let H1, H2 be finitely presented and one-ended groups. Then: (i) If H1 is not amenable, then E2H and Filhz are Q.I. if and only if IF11, IF21 have the same prime ohvisors and H1, H2 are grass'-isometric. (ii) If H, is amenable, Hen F, 2 H, and FZ 2 Hz are Q.I. if and only if there are $a, r, s \ge 1$ s.t. $(f_1 = a^r, |f_2| = a^s)$ and there exist a quasi-s-to-one quari-isometry Hi -> Hz. Remark: More generally, they classify an(x) for some assumptions on X.

Scaling quasi-isometries Notations: In a methic space X, given A = X and RZO, A+R He R-neighborhood of A, $A^{+R} := \bigcup_{\alpha \in A} B_{\chi}(\alpha, R).$ Note that $(A^{+R})^{+S} \subseteq A^{+(R+S)}$ The Hansdorff distance between $A, B \subseteq X$ is d Hams (A, B) := inf ? R2 u: A-B+R, B-A+R?. Lemma: let $f: X \rightarrow Y$ be a (G, K) - Q.I.let $A \subseteq X$. Then $f(A^{+R}) \subseteq f(A)^{+(CR+K)}$. Definition: A Q.I. f: X-> Y between two bounded degree graphs is quasi-k-to-one (for k>0), if there

is
$$C>0$$
 such that
 $|k|A| - |f^{-1}(A)| \leq C \cdot |\partial_{Y}A|,$
for all finite subsets $A \subset Y$, where
 $\partial_{Y}A := 3y \in Y_{1}A : \exists a \in A, y \in a_{2}^{2}.$
Theorem (Whyte 1999): $A \notin I. f: X \rightarrow Y$
is quasi-one-to-one if and only if it
lies at bounded distance from a bjectu.
Remark: Between non amenable space,
 $a \notin I. f: X \rightarrow Y$ is quasi-k-to-one
for any k>0. Indeed, as Y is not
amenable, there is $E > 0$ such that
 $|\partial A| > E|A|$ for any $A \subset Y$ finite, and
thus

(kIAI-(f-'(A)) 5 kIA + (f-'(A))

$$\leq (k+P)|A| \quad (\text{where } P \geqslant 1 \text{ is a miniform bound on } |f^{-1}(iyi)|, yei)} \leq \frac{k+P}{E} |BA|.$$

Consequence: Any quasi-isometry getween non amenable spaced is at bounded distance from a orjection.
Yain example of a scaling Q.I: the inclusion $H \subseteq G$ of a f.i. Subgroup into G is quasi - 1 - to-one. IG:H7
For amenable spaces, we have:
Lemma: let X amenable. If f:X-ay is quasi - k-to-one and quasi - k'-to-one then k = k'.

Proof: let
$$(F_n)_{n\in\mathbb{N}}$$
 be a Follow sequence
of X, i.e. $\frac{|\partial F_n|}{|F_n|}$ $\xrightarrow{n\to\infty} 0$.
f quasi-k-to-one $\Rightarrow \exists C > 0$ s.t.
 $\forall n\in\mathbb{N}, |k|F_n|-|f^*(F_n)| \leq C \cdot |\partial F_n|$
i.e. $\forall n\in\mathbb{N}, |k-\frac{|f^{-1}(F_n)|}{|F_n|} \leq C \cdot \frac{|\partial F_n|}{|F_n|}$
 $\Rightarrow k = \lim_{n\to\infty} \frac{(f^{-1}(F_n)|}{|F_n|} \leq L'. \square$
Stability properties
Theorem: let $f:X \rightarrow Y, g: Y \rightarrow Z, h:X \rightarrow Y$
be Q.I.
(i) If $f:X \rightarrow Y$ is quasi-k-to-one,
and $d(h,f) < \infty$, then h is quasi-k-
to-one.
(ii) If $f:X \rightarrow Y$ is quasi-k-to-one

and g: Y -> Z is quasi-k'-to-one, then gof is grassi-kk'-to-one. (iii) If f:X→Y is quasi-k-to-one, Hen any of its gnasi-inverses is guasi-1-to -ove. All this shows Hat, when X is amenable, there is a well-defined group morphism Sc: $QI_{sc}(X) \longrightarrow (\mathbb{R}_{>0}, \cdot)$ /bounded distance f gnasi-k-to-one (-) k and we call Sc(X) := Im(Se) the scaling group of X. Proposition (Genevois and Tessera): · Sc (Z^h) = IR>0, and more generally Sc (I) = IR>0 for any 17<G

Coarse embedding p: G c> F2H, there is RZO such that P(G) lies into the R-neighborhood of an H-coset.

Remark: They proved the same statement for general lamplighter graphs.