ORBIT FULL GROUPS FOR LOCALLY COMPACT

GROUPS

A. CARDERI AND F. LE MAITRE

ABSTRACT. We show that the topological rank of an orbit full
group generated by an ergodic, probability measure-preserving free
action of a non-discrete unimodular locally compact Polish group
is two. For this, we use the existence of a cross section and show
that for a locally compact Polish group, the full group generated
by any dense subgroup is dense in the orbit full group of the action
of the group.

We prove that the orbit full group of a free action of a locally
compact Polish group is extremely amenable if and only if the act-
ing group is amenable, using the fact that the full group generates
the von Neumann algebra of the action.

CONTENTS

Introduction]

B

Orbit equivalence 1n the locally compact casel

1.

Measure-preserving actions|

2.

Orbit full groups|

3.

Cross-sections and product decomposition|

4.

Weak orbit equivalence versus orbit equivalence]

[2. Dense subgroups in orbit full groups|

2.1.  Suitable actions|

p.7.

An equivalent statement|

[2.3. Proof of Theorem 2.6l

[3.

Topological rank of orbit tull groups|

T

The orbit tull group as a unitary group|

E.

Extreme amenability of orbit full groups|

[Appendix A. Haar measures for equivalence relations|

AL

Invariant Haar systems|

A.2.

Unimodularity|

References|

N =~ =N

13
14
15
16
21
22
25
27
27
30
34



2 A. CARDERI AND F. LE MAITRE

INTRODUCTION

The full group of a measure-preserving action of a countable group on
a standard probability space (X, u) is the group of measure preserving
transformations which preserve every orbit. It is a (complete) invariant
of orbit equivalence for the action and has a natural Polish topology
induced by the uniform metric d,(S,T) := p({x € X : S(z) # T'(2)}).
This group topology encodes many interesting property of the action.
For example Giordano and Pestov proved in [GPQO7| that if the group
acts freely, then the full group is extremely amenable if and only the
acting group is amenable. Another example was provided by the second
named author in [LM14]: the cost of the action is very closely related
to the topological rank of the full group, that is the minimum number
of generator needed to generate a dense subgroup.

Now let G be a Polish group and consider a measure-preserving G-
action on a standard probability space (X, ). In [CM16|, we initiated
the study of a Polish group topology on the associated orbit full group

Re] ={T € Awt(X,p) : Ve € X,T(z) € G- x}

which coincides with the uniform topology when G is countable discrete
group. In this work, we want to analyse orbit full groups associated to
free actions of second countable locally compact groups, which most of
the time we will suppose unimodular.

This study is motivated by the fact that for actions of locally compact
groups, orbit full groups are still complete invariants of orbit equiva-
lence [CM16, Thm. 3.26], so their topological properties should reflect
properties of the associated equivalence relation. Moreover, these or-
bit full groups are better behaved since they arise naturally as unitary
groups (see Sec. |4) and “preserve density” as follows.

Theorem A (see Thm. . For every measure-preserving action of
a locally compact Polish group G on a probability space (X, p) and for
every dense subgroup H C G, the orbit full group [Ry| is dense in
Re].

The above theorem is false for general actions of Polish groups: an
example of Kolmogorov gives a measure-preserving action of the bijec-
tion group of the integers G, such that whenever H < G, is a dense
countable group, the full group [Ry] is not dense in [Rg_ ] (see [CM16,
Ex. 3.14]).

We will actually prove that Theorem [A] holds for every suitable ac-
tion of a Polish group (see Definition and Theorem [2.3)). This
notion was introduced by Becker in [Bec13], where he proved that any
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measure-preserving action of a locally compact Polish group is suit-
able. On the other hand, general Polish groups can have actions which
are suitable and actions which are not. As an example, the standard
Bernoulli shift of &, on [0, 1] is suitable (see Example [2.4)).

Using Theorem [A] we can then show that orbit full groups associated
to actions of locally compact, non-compact and non-discrete Polish
groups contain a dense 2-generated subgroup. This is in sharp contrast
with the discrete case where the topological rank reflects the cost of
the equivalence relation and thus can be equal to any integer n >
2. Our result also shows that cost cannot provide a rich invariant of
orbit equivalence for actions of non discrete locally compact groups (see

Remark [1.21]).

Theorem B (see Theorem[B.1]). Let G be a locally compact unimodular
non-discrete non-compact Polish group. For every measure-preserving,
essentially free and ergodic action of G, there is a dense Gs of couples
(T,U) in [Rg]* which generate a dense free subgroup of [Rg| acting
freely. In particular, the topological rank of [R¢]| is 2.

A key tool in the proof of Theorem Blis a well-known result of Forrest,
namely the existence of a cross-section for actions of locally compact
group [For74|. This will roughly provide a countable group I'" such that
the cost 1 group Z x I is a “measurable dense subgroup” of G. We can
then use the results of [LM14] along with Theorem [A| to find a dense
2-generated subgroup.

Remark. Theorem [B]is also true in the case G is compact acting ergod-
ically on (X, u). Indeed in this case the action is essentially transitive
and [R¢] = Aut(X, 1) which has a dense G of couples of topological
generators inducing a free action of the free group on two generators
by results of Prasad and Toérnquist respectively [Pra81l Tor06]. We
do not know whether Theorem [B] holds for non-discrete Polish groups,
even in the case of suitable actions.

In this work, we also extend a result of Giordano and Pestov, Theo-
rem 5.7 of [GPQ7|, that says that a full group of a free, ergodic action
of a countable group is extremely amenable if and only if the acting
countable group is amenable.

Before stating the theorem, let us recall that a group is extremely
amenable if every action of the group on a compact space admits a
fixed point. The first example of an extremely amenable group was
given by Christensen and Herer [HCT5|. Since then several examples of
extremely amenable groups have been found such as the unitary group
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of a separable Hilbert space [GM83] or the group of measure-preserving
bijections of a standard probability space [GP02].

Theorem C. Let G be a locally compact second countable unimodular
group acting freely and ergodically on (X, p). Then the full group of G
s extremely amenable if and only if G is amenable.

The proof of the direct implication in the theorem is an easy adapta-
tion of Giordano and Pestov’s arguments to the locally compact case,
using cross-sections.

For the other direction, we follow a different path and use von Neu-
mann algebras. We first prove that the von Neumann algebra of the
action G ~ (X, u) is generated by the full group [R¢], see Proposi-
tion 4.3l We use this to show that if [R¢] is extremely amenable, then
the von Neumann algebra of the action is amenable and therefore the
acting group is amenable.

Acknowledgments. Both authors would like to thank Damien Gabo-
riau, Henrik Petersen, Sven Raum and Todor Tsankov for many useful
discussions around this topic. We are especially grateful to Sven Raum
for explaining to us the proof of item (3) of Proposition in the
discrete case. The authors were partially supported by Projet ANR-
14-CE25-0004 GAMME.

1. ORBIT EQUIVALENCE IN THE LOCALLY COMPACT CASE

1.1. Measure-preserving actions. Whenever a group G acts on a
set X and x € X, we denote by GG, < G the stabilizer of x. The free
part of an action G ~ X is the G-invariant set of all x € X such that
G, = {e}.

A standard probability space is a probability space (X, B, u) such
that (X,B) is a standard Borel space and p is a Borel non-atomic
probability measure. All such probability spaces are isomorphic, see
[Kec95, Thm. 17.41]. A subset A of X is a Borel set if it belongs
to the o-algebra B. It is called a (Lebesgue-) measurable set if it
belongs to the p-completion of B. From now on, we will drop the B
and fix a standard probability space (X, ).

Whenever G is a Polish group, a Borel G-action is a Borel action
map o : G x X — X. As usual, we will often drop the letter a and let
gz := a(g,z) for every g € G and x € X. The following lemma is
well-known, for a proof see [MRV13] Lem. 10].
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Lemma 1.1. Let G be a locally compact Polish* group, and consider a
Borel G-action on a standard Borel space X . Then the free part of the
G-action is a Borel subset of X.

We denote by Aut(X, ) the group of all measure-preserving Borel
bijections of (X, i), where we identify two such bijections if they co-
incide on a full measure subset of X. It is equipped with the weak
topology, defined to be the coarser group topology which makes the
maps T' € Aut(X, u) — u(T(A) A A) continuous for every Borel set A.
This turns Aut(X, ) into a Polish group (see e.g. [Kecl0, I.1.(B)]).

A measure-preserving G-action on (X, u) is a Borel G-action
on X such that for every ¢ € G and every Borel A C X, one has
u(gA) = p(A). If G is a group, a near-G-action on (X, p) is a homo-
morphism G — Aut(X, ). Every measure-preserving action induces a
near-action, and a near-action is the same as an action by u-preserving
automorphisms on the measure algebra of (X, u).

The following lemma is well-known when G is locally compact (see
for instance [OWS87, Lem. II.1.1]). We include a simple proof which
works for all Polish groups.

Lemma 1.2. Every measure-preserving action o of a Polish group G
on (X, p) induces a continuous near-action p, : G — Aut(X, u).

Proof. By Pettis’ Lemma (see [BK96, Thm. 1.2.6]), we only need to
check that p, is a Borel map. By definition of the weak topology on
Aut(X, p) it is enough to show that for every Borel subset A of X and
every € > 0, the set

B:={geG:ulg(A) A A) <e}

is Borel. For this, observe that since the action is Borel, the subset
I''={(g9,2) € XxG: z € g(A)}is Borel and hence I'y :=T'A(AXG)
is also Borel. This implies that the map

M:g—p({zeX: ze AAg(A)})
is also Borel. So we can conclude observing that B = M~1([0,¢[). O

For locally compact Polish groups, measure-preserving actions and
continuous near-actions are in one-to-one correspondence.

Theorem 1.3 (Mackey, [Mac62|). Let G be a locally compact Polish
group and let (X, p) be a standard probability space. Then for every

IRecall that a locally compact group is Polish if and only if it is second-countable
(see [Kec95l, Theorem 5.3]).
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continuous homomorphism p : G — Aut(X, 1) there exists a measure-
preserving action « of G on (X, pu) such that the induced homomor-
phism po, : G — Aut(X, ) is equal to p.

Moreover if a and [ are two measure-preserving actions of G such
that the induced homomorphisms p, and pg are equal, then there is a
Borel G-invariant subset A C X of full measure such that a}A = B}A.

Remark 1.4. The above result is in sharp contrast with the follow-
ing situation which was uncovered by Glasner, Tsirelson and Weiss: if
G a Levy Polish group, every measure-preserving GG-action is trivial
but G can still have interesting continuous near actions. Examples in-
clude Aut(X, p) itself or the orthogonal group of an infinite-dimensional
Hilbert space, see [GTWO05].

If G is locally compact and Polish, then we will call the measure-
preserving action associated to a near-action p : G — Aut(X,pu) a
realization of the near-action. Let us recall two important definitions.

Definition 1.5. A measure-preserving action of a Polish group G on
the probability measure space (X, u) is

e essentially free if the free part of the action has full measure,
that it if there is a measurable subset of full measure A C X
such that for every x € A and every g € GG, we have that gx # x;

e ergodic if every Borel subset A C X which is almost G-
invariant (i.e. for all ¢ € G we have pu(A A g(A)) = 0) has
measure 0 or 1.

Remark 1.6. e In the definition of essential freeness, one can
actually asssume that A is G-invariant and Borel by Lemma
L1

e There are actions of compact groups such that for every g € G,
the set {x € X : gx = 2} has measure 0 but which are not
essentially free.

e Mackey’s Theorem implies that if G is locally compact and
Polish then if a realization of an action is essentially free, then
all Borel realizations are essentially free.

e Another easy consequence of Mackey’s Theorem is that a
measurable action of a locally compact Polish group is ergodic if
and only if every Borel subset A C X which is G-invariant (i.e.
forall g € G, we have g(A) = A) has measure 0 or 1 (see [Mac62,
Theorem 3|). This is not true for Polish groups in general, as
witnessed by Kolmogorov’s example [Dan00, Example 9.
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Every locally compact Polish group admits an essentially free measure-
preserving action (see e.g. Proposition 1.2 in [AEG94]). We will now
give two concrete examples of measure-preserving actions.

Example 1.7. Suppose that G is totally disconnected and non-compact.
By van Dantzig’s theorem, there exists a chain (K, ),en of compact
open subgroups of G such that N, K, = {15}. We let now G act by
permutations on the countable set U,,G/K,. The associated Bernoulli
shift on [0, 1]“»¢/Kn is essentially free since the G-action on U,G/K,
is faithful, and ergodic because every G-orbit on LI, G/ K, is infinite.

Example 1.8. Suppose that G has a lattice I' < G, let A be a Haar
measure on G and let D be a fundamental domain of the right I'-action
on G. Then any probability measure-preserving action of I on (X, u)

induces a measure-preserving action of G on (X X D,u x A|p), see
Definition 4.2.21 in [Zim8&4].

We will see in Section that all actions of any locally compact
Polish group can be decomposed as a product equivalence relation as
in the previous example.

1.2. Orbit full groups. Let us start by recalling Dye’s definition of
full groups [Dye59]. A subgroup G < Aut(X,p) is full if whenever
(A,) is a partition of a full measure subset of (X, ) and (7},)nen is a
sequence of elements of G, the new element 7" € Aut(X, i) defined by

T(x)=T,(x) forall z € A,

actually belongs to G. A full group is ergodic if for all A C X, if
for all g € G one has u(gA A A) = 0, then A has measure 0 or 1.
Given a group G < Aut(X, u), there is a smallest full group containing
G, denoted by [G]. If the corresponding G-almost action is ergodic,
then [G] is ergodic. The following proposition is well known in the case
of full groups of ergodic measure-preserving equivalence relations. Its
proof in the general case can be found in [Dye59, Lem. 3.2].

Proposition 1.9. Let G < Aut(X, ) be an ergodic full group. Then
forany A, B C X of same measure, there isT € G such that T(A) = B
up to measure zero.

For a measure-preserving action of a Polish group G on X, we will
denote by Rg the orbit equivalence relation,

Re = {(z,y) € X x X : there exists g € G such that gz = y}.

We recall now the definition of orbit full groups and their Polish
topology (see [CM16] for more details and proofs).
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Definition 1.10. Let G be a Polish group. The orbit full group of
a probability measure-preserving action of G on (X, u) is the group

Re] :=={T € Aut(X,u) : T(z) € G-z for every x € X}.

Let di be a compatible, right-invariant and bounded metric on G.
We denote by LO(X, i, G) the space of measurable functions from X
to G which we equip with the metric

de(f.g) == /X de( (), g(x))dp(z).

The topology induced by this metric only depends on the topology
of G. Tt is a Polish topology called the topology of convergence in
measure.

For a probability measure-preserving action of G on (X, i), for every
measurable subset A C X and measurable function f : A — G, we

define
o(f): A— X, by (f)(z) = f(z)z,

and we put [R¢] := @~ ([Rg]).
The Polish space [R¢| equipped with the product f-g(x) = f(g(z)x)g(x)
becomes a Polish group for the topology of convergence in measure.

—~—

Moreover the map @ : [Rg] — [Rg] is a group homomorphism with
respect to this product.

The topology of convergence in measure on [R] is the quotient
topology induced by ® and we proved in Theorem 1 of [CM16] that is
a Polish group topology.

Remark 1.11. If the action of G is essentially free, then the map &
is a bijection, so the convergence in measure on [Rg] is given by the
metric dg.

We also recall that full groups of locally compact Polish groups are
complete invariants of orbit equivalence.

Definition 1.12. A probability measure-preserving action of the group
G on (X, u) is orbit equivalent to a probability measure-preserving
action of the group H on (Y, v) if there exists a subset of full measure
A C X and a measure-preserving Borel bijection ¢ : A — Y such that

P X p(RagN(Ax A)) =Ry N (p(A) x p(A)).

We will also say that the equivalence relations Rg and Ry are iso-
morphic up to measure zero. We recall the following theorem.
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Theorem 1.13 (J[CM16, Thm. 3.26]). Let G and H be locally compact
Polish groups acting on the probability space (X, ) preserving the mea-
sure. Then the actions are orbit equivalent if and only if the associated
orbit full groups are isomorphic.

1.3. Cross-sections and product decomposition. We present now
the most important property of measure-preserving actions of locally
compact Polish groups: the existence of a cross-section.

Definition 1.14. Consider an essentially free, measure-preserving ac-
tion of a locally compact Polish group G on a standard probability
space (X, u). A Borel subset Y C X is a cross-section of the action
if there exists a neighborhood of the identity U C G such that the map
0 :UxY — X defined by 0(u,y) := uy is injective and such that
w(X\GY) =0.

The existence of cross section was proved by Forrest in [For74, Propo-
sition 2.10] in the more general context of non-singular actions. For a
more recent proof, we invite the reader to read Theorem 4.2 of [KPV15].
The following theorem is essentially a version of [For74, Proposition
2.13] in the context of a measure-preserving action of a unimodular
locally compact group.

Theorem 1.15. Let G be a unimodular, locally compact, non-compact
and non-discrete Polish group, denote by A a Haar measure on G. Con-
sider a measure-preserving, essentially free and ergodic action of G on
the standard probability space (X, ).

(1) There exists a standard probability space (Y,v) and a countable
group T acting on (Y,v) by measure-preserving transformations
such that the action of G is orbit equivalent to the product action
of St x T on (S' x Y, L x p), where S is the circle group® acting
on itself by translation and L s its normalized Lebesque measure.

(1i) Identifying G x X to R¢ via the map (g,x) — (g,9 - x), one can
choose an orbit equivalence map © : (S' XY, h xv) — (X, u) such
that the induced map between equivalence relations

O X0 :(Rst XRp, Lx Lx0)— (Rg, A x p)

is measure-preserving, where U is the o-finite measure induced by
v on Rr via integration of the counting measure of the fibers.

(11i) The group G is amenable if and only if the orbit equivalence rela-
tion induced by T' on (Y,v) is amenable.

2Actually, any infinite compact metrizable group will do; the point is that the
orbit equivalence relation associated to S' ~ S! is transitive.
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Proof. In this proof we will use the notations and conventions of Propo-
sition 4.3 of [KPV15|. Let Y C X be a cross section and let U C G be
a neighborhood of the identity as in Definition [I.14 We consider the
restriction of R to Y,

R:={(y,y) €Y xY :3g€ G,y =gy}

By [KPV15, Proposition 4.3.1], R is a Borel, countable equivalence
relation on Y. Define ¥ : G x X — Rg by V(g,z) = (gx,z) and
observe that since the action is free, ¥ is a bijection. Denote by ¥y
the restriction of ¥ to G x Y and put Z = ¥y (G x Y). Observe that
the projection m : Z — X on the first coordinate is countable-to-one
hence we can define a measure 1 on Z by integrating with respect to
it the counting measure over the projection 7. By definition we have
pw(UY) =n(Uy (U xY)). Put covol(Y) := \U)/u(UY). As explained
in the proof of [KPVI5, Proposition 4.3.2|, the unicity of the Haar
measure on GG implies the existence a probability measure v on Y such
that W.(\ x (v/covol(Y))) = n.

Moreover by [KPV15 Proposition 4.3], we know that

(1) the probability measure v is R-invariant,

(2) (R,v) is ergodic if and only if the action of G is ergodic,

(3) (R,v) has infinite orbits almost everywhere if and only if G is non-
compact,

(4) (R,v) is amenable if and only if G is.

By property (3) above, we deduce that (Y,v) is diffuse. Moreover
since R is countable and measure-preserving, Feldman and Moore’s
result ([FMT77, Theorem 1]) gives us a measure-preserving action of a
countable group I' on (Y, v) which induces the equivalence relation R.

Up to taking an open subset of U, we may assume that u(U-Y) = %
for some integer K € N. Set A = U - Y. By ergodicity of G, we
can find T € [Rg| of order K such that {A,T(A),..., TK"1(A)} is
a partition of a full measure subset of X. Let us denote by c the
counting measure on Z/KZ and consider the equivalence relation S’
on (Z/KZ x U x Y,c x A\y x v) defined by

(k,u,y)S(K o',y if yRy'.
The measure-preserving map
O (Z/KZ xU X Y,cx Ay xv) = (X, p)
' (k,u,y) :==T"(u-y),

defines an orbit equivalence between S’ and Rg. Denote by L the nor-
malized Lebesgue measure on the circle S' and fix a measure-preserving
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isomorphism
a:(SY L) = (Z/KZ x U,c x \p).

Let S be the equivalence relation induced by the action of I' x S* on
Y x S! where I" acts on I' and S' acts on itself by translation. Observe
that « induces an orbit equivalence between S’ and S, which combined
with ©’ gives an orbit equivalence © between S and R¢ and hence (7)
is proved.

Now (7i) can be deduced by an easy computation; it is also a direct

application of the uniqueness of the Haar measure on R¢ (see Theorem
A.13)). Condition (4i7) follows from property (4). O

1.4. Weak orbit equivalence versus orbit equivalence. Let R
be a Borel equivalent relation on X and A C X be a Borel subset
with positive measure. Therestriction of R to A is the equivalence
relation R N (A x A) on the standard probability space (A, p4) where

the measure p4 is defined by: for all Borel B C A, pua(B) = %. Let

(4)
us recall two important definitions.

Definition 1.16. Let I' and A be two countable groups.

e The groups I' and A are measure equivalent if there ex-
ists a standard o-finite measured space (£2,m) and commut-
ing measure-preserving actions of I' and A on (€2, m) which are
essentially free and admit a fundamental domain with finite
measure.

e The groups I' and A are weakly orbit equivalent if I' and
A admit measure preserving essentially free ergodic actions on
probability spaces (X, ) and (Y, v) such that there exist mea-
surable subsets A C X and B C Y such that Rr restricted
to A is orbit equivalent to R, restricted to B. The quantity
w(A)/v(B) is called the coupling constant of the stable orbit
equivalence.

Remark 1.17. An application of the ergodic decomposition theorem
yields than one can drop the ergodicity assumption in the definition of
weak orbit equivalence.

Furman proved in [Fur99b| that two countable groups are measure
equivalent if and only if they are weakly orbit equivalent. Let us now
study these notions for non-discrete locally compact groups.

Definition 1.18. Let G and H be two Polish locally compact groups.

e The groups G and H are orbit equivalent if they admit er-
godic measure-preserving essentially free actions which are orbit
equivalent.
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e The groups G and H are weakly orbit equivalent if they ad-
mit ergodic measure-preserving essentially free actions on (X, y1)
such that there exist positive measurable subsets A C X and
B C X such that Rg restricted to A is orbit equivalent to Rq
restricted to B.

Note that a non-discrete locally compact group is never weakly orbit
equivalent to a discrete one.

Lemma 1.19. Let G be a non-discrete locally compact Polish group
acting essentially freely ergodically in a measure-preserving manner on
(X, ). Then for every Borel subset A C X of positive measure, Rg is
orbit equivalent to its restriction to A.

Proof. By Theorem [[.15] we can find a standard probability space
(Y,v) and a countable group I' acting on (Y, v) by measure-preserving
transformations such that the action S x I" on (S* x Y, L x p) is orbit
equivalent to Rg. It thus suffices to show that for every measurable
A CS!' x Y of positive measure, Rgixr = Rgt X Rr is orbit equivalent
to its restriction to (A, ).

So let A be a subset of S! x Y of positive measure. Let A be a Borel
subset of S' with measure (A). Then since Rg: is transitive it is orbit
equivalent to its restriction to A, which in turn yields that Rr X Rg
is orbit equivalent to its restriction to A x Y.

Since the G-action is ergodic, there exists ¢ € [Rgixr] which maps
a full measure subset of A x Y to a full measure subset of A (see
Prop. , so that the restrictions of Rgi.r to A and A x Y are orbit
equivalent. We conclude that Rgi . is orbit equivalent to its restriction
to A, hence the same conclusion holds for R. U

Theorem 1.20. Let G and H be two non-discrete locally compact Pol-
ish groups. Then G and H are orbit equivalent if and only if they are
weakly orbit equivalent.

Proof. The direct implication is by definition and the converse is a
straightforward application of the previous lemma. O

Remark 1.21. Any reasonable definition of cost for non-discrete lo-
cally compact groups would thus only provide three distinct orbit equiv-
alence classes: the ones with a corresponding Rr of cost 1, the ones
with Rr of finite cost greater than 1, and the ones with Rr of infi-
nite cost. This mirrors the first L2 Betti number of locally compact
unimodular groups, see [Pet13| and [KPV15].

The following proposition is surely well-know to experts, but we were
not able to find it in the literature. It guarantees that orbit equivalence
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for locally compact non discrete groups is at least as complicated as
measure equivalence for countable groups.

Proposition 1.22. Two countable groups I' and A are measure equiv-
alent if and only if the locally compact groups T' x St and A x St are
orbit equivalent.

Proof. Suppose that I' x S! admits an action on the probability space
(X, ;) which is orbit equivalent to an action of A x S!. Then we can
let T" act on Rryst on the left and we can let A act on the right via
the orbit equivalence. These two actions commutes and in both cases
a fundamental domain is given by X x S! which has finite measure.
Suppose now that the groups I' and A are measure equivalent, then
by [Fur99al Lem. 2.2.2] and [Fur99bl Lem. 3.2] they are weakly orbit
equivalent. Then I' x S! and A x S' are weakly orbit equivalent, hence
orbit equivalent by Theorem [1.20] O

Note that the groups I' x S' and A x S! are unimodular, so Theorem
applies. Therefore any orbit equivalence between them sends the
Lebesgue measure of the circle group to a multiple of the Lebesgue
measure of the other circle. This constant is the coupling constant of
the induced measure equivalence between I" and A.

Corollary 1.23. There are uncountably many non-discrete locally com-
pact groups up to orbit equivalence.

Proof. This follows from the fact that there are uncountably many
countable groups up to measure equivalence (see the paragraph pre-
ceding Pygr15* in [Gab05]). O

2. DENSE SUBGROUPS IN ORBIT FULL GROUPS

The aim of this section is to prove the following theorem.

Theorem 2.1. Let G be a locally compact Polish group. For every
measure-preserving action of G on the probability space (X, ) and for
every dense subgroup H C G, we have that [Ry] is dense in [Reg].

Theorem will be a crucial tool to compute the topological rank®
of an orbit full group (see next section).

3Recall that the topological rank of a topological group is the minimum of the
rank of a countable dense subgroup.
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2.1. Suitable actions. We will prove Theorem under a weaker
hypothesis in the context of Polish group actions. Recall however, that
Kolmogorov’s example ([Dan00, Example 9]) provide a counterexam-
ple of Theorem 2.1 Indeed there is a Borel probability measure on
{0, 1} such that the full group generated by the finitely supported
permutations is not dense in the orbit full group of the Polish group of
all permutations of N acting by shift on {0, 1}. The fact is that this
action is not suitable.

Definition 2.2 (Becker, [Becl3l Definition 1.2.7]). Let G be a Polish
group. A Borel, measure-preserving action of G on the probability
space (X, p) is suitable if for all Borel subsets A, B C X of positive
measure, one of the following two conditions holds:

(1) for any open neighborhood of the identity O C G, there is g € O
such that u(AnNgB) > 0;

(2) there are Borel subsets A’ C A and B’ C B of full measure in A
and B and an open neighborhood O of the identity in G such that
(OA YN B =0.

We will prove the following.

Theorem 2.3. Let G be a Polish group. For every Borel, measure-
preserving, suitable action of G on the probability space (X, p) and for
every dense subgroup H C G, the orbit full group [Ry| is dense in
[Ral-

Becker proved in Theorem 1.2.9 of [Bec13], that all measure-preserving
actions of locally compact Polish groups are suitable, so Theorem
implies Theorem [2.1 We end this section by giving a different example
to which our results apply.

Example 2.4. The standard Bernoulli shift G, ~ ([0, 1]N, A®N) is a
suitable action, where A\ is the Lebesgue measure.

Proof. Set X := [0,1]" and p := A\*N and let A, B C X be Borel
subsets of positive measure. Suppose that (1) does not hold, and let O
be a neighborhood of the identity such that

forall g € O, u(AngB) = 0.

By shrinking O if necessary, we may assume that there exists N € N
such that O is the subgroup of G, consisting of all the permutations
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Let 7 € O be a bijection whose set of fixed points is {0, ..., N — 1},
and which has only one non-trivial orbit. Then its Bernoulli shift on
(Z,v) is ergodic since it is conjugate to the Z-shift on ([0, 1], \®%).
Moreover the ergodic decomposition of its Bernoulli shift on (X, ) is
given by (f,)yey where p, is the probability measure on X defined by
fy =0y @ V.

Since u(ANTFB) = 0 for all k € Z and every p, is T-ergodic, there is
a full measure Borel subset Y’ of Y such that for all y € Y’ we have that
ty(A) = 0 whenever p,(B) > 0. Let Y, be the Borel set of y € Y’ such
that p,(B) > 0, and put Y; := Y\ Yy. The sets A" := (Y, x [0, 1]N)N A
and B’ := (Y x [0, 1]N) N B witness that (2) holds. O

Remark 2.5. In the above example, since the countable group &
of finitely supported permutations is amenable, the full group it gener-
ates is extremely amenable for the uniform topology by [GP07, Thm.
5.7]. Since the uniform topology refines the topology of convergence in
measure and &, is dense in &, Theorem yields that [Re_ ] is
extremely amenable. It would be interesting to understand for which
non locally compact closed subgroups G < &, the orbit full group
associated to the standard Bernoulli shift is extremely amenable.

2.2. An equivalent statement. From now on, we will use the nota-
tions of Section[I.2] For every Borel, measure-preserving action of G on

the probability space (X, u), we denote by [G], C [R¢] the subset of

—~

function with countable (essential) image and we put [G]p = ([G]p).
Note that [G]p is the smallest full group containing the image of G
inside Aut(X, ).

Theorem [2.3|follows form the following weaker theorem, which is also
important in its own right.

Theorem 2.6. Let G be a Polish group. For every Borel, measure-
preserving, suitable action of G on the probability space (X, i), we have

that [G], C [R¢]| is a dense subgroup.

Before deducing Theorem from the above result, we need the
following lemma which will be used several times.

Lemma 2.7. Let A C X and let f : A — G be a function with
countable image. If the map ®(f) : A — X defined by ®(f)(x) = f(x)x

is injective, then there exists f' € [G], which extends f.
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Proof. Let I' be the group generated by the range of the function f.
Since ®(f) is injective, the map ®(f) is an element of the pseudo-
full group? of I'. The elements of the pseudo-full group of I' preserve
the Rr-conditional measure and any two sets having the same Rp-
conditional measure can be sent to one another by an elements of the
pseudo full group of I'(see [LMI15, Sec. 2.1] for details). Therefore
there is an element 7' € [G]|p which extends ®(f). By lifting such a T’

—~

to [G], where f was not defined, we obtain f’ € [G], which extends
3 0

Proof of Theorem[2.3 Let G be a Polish group and let H be a dense
subgroup. Consider a Borel, measure-preserving suitable action of G
on the probability space (X, ). By Theorem , we only need to prove

that [H|,, C [G]p, is dense.
Fix a compatible, right-invariant metric dg on G bounded by 1,

fix ¢ > 0 and take f € [R¢],. There are £ € N, a finite subset
{g1,--.,9x} C G and a finite partition {Ay,..., Ax} of X such that
1(Ap) < €/2 and for every i > 1, we have f(A;) = {¢;}. By den-
sity and weak-continuity of the action, there exists {hy,..., hx} C H
such that for every i € {1,...,k}, we have that dg(g;, hi) < € and

and observe that u(B) > 1 —e. Consider the map f’': B — H defined
by f'(z) = h; whenever x € B;. Then f has finite range, and since
the subsets h;B; are disjoint, ®(f) is injective. Lemma allows us

to extend f’ to f” € [G],. We clearly have de(f, f") < 2¢, which ends
the proof. O

2.3. Proof of Theorem [2.6l

—_—~—

Definition 2.8. Fix f € [Rg] and a neighborhood of the identity
N C G. We say that a couple (A, g) is (N-)good if

(1) A C X is a measurable subset of positive measure and g : A —
GG is a measurable function with countable image,

(2) for every x € A, we have f(z)g(z)™* € N,

(3) the map ®(g) : A — X defined by ®(g)(z) = g(x)z is injective.

—_~—

We note that for a fixed f € [R¢g] the existence of a good couple is
not a trivial fact. Indeed, we will use the hypothesis that the action is
suitable only to show the existence of such couples.

4The pseudo-full group of the countable group I' acting on (X, i) is defined to
be the set of Borel partial maps whose graph is a subset of Rr.
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The proof of the theorem will be a measurable version of the Hall’s
marriage theorem and it will follow the same strategy as Hudson’s in
[Hud93|. For a fixed f as in Definition 2.8} using Zorn’s lemma, we will
construct for every € > 0 and neighborhood of the identity N C G a
good couple such that p(A) > 1 — ¢ in three steps.

Step 1. In the first step (and only in this one), we will use the hypoth-
esis that the action is suitable.

Proposition 2.9. Let f € [ﬁ;] and let N C G be a neighborhood of the
identity. For every B C X of positive measure, there is a good couple
(A, g) such that A C B has positive measure and ®(g)(A) C ®(f)(B).

Proof. Consider a neighborhood of the identity O C G such that O =
O~' and O* C N. Let f(zg) be an element of the support of the
pushforward measure f, |, and put Ap := BN f~1(Of(xg)). For every
neighborhood of the identity O in G, set Cor := BN f~1(O' f(xy)).
Note that Cor C Ao, whenever O’ C O. By definition of the support
of fipu|, the Borel set Cor has positive measure.

Let us show that condition (2) of Definition [2.2|is not satisfied for the
two Borel sets ®(f)(Ag) and f(x)Ag. Indeed, (f)~! and f(zg)~! are
measure-preserving so if condition (2) holds, then there is a full measure
subset A" C Ao such that ®(f)(A’) and O’ f(x)A’ are disjoint. This is
a contradiction because ®(f)(A") and O’ f(xg) A’ contain ®(f)(A'NCo)
which has positive measure.

Since the action is suitable, (1) (of Definition has to hold. So
there is h € O such that

w(@(f)(Ao) N hf(xe)Ao) > 0.

Set A := Ao N f(xo) 'h'®(f)(Ap) and for every x € A put g(x) :=
hf(xo). The couple (A, g) is good, because for every z € A we have
that f(z)f(zo)™* € O and

f(@)g(z)™' = f(z)f(xo)'h € O* C N. O

Step 2. For a neighborhood N of the identity in G and ¢ > 0, we
now define the order on the family of N-good couples associated to a

function f € [R¢].

Definition 2.10. Let (Aj, ¢1) and (As, g2) be two good couples. We
say that (A1, ¢1) < (Ag, g2) if Ay DO Ay almost everywhere and if

pl{r € Ar: gu(e) # 9a(0)}) < (u(As) — (A1),
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We identify two good couples (Ay, ¢g1) and (As, g2) if u(A; A Ay) =0
and for almost all z € A; N As, g1(x) = go(x). This makes the relation
< antisymmetric. It is moreover clearly reflexive.

Lemma 2.11. The relation < is an order relation on the set of good
couples.

Proof. The only fact left to prove is that < is transitive. For this
suppose that

(Alvgl) = (A2792) < (A37.g3)7
then

{re A gi(z) #g3(n)} C{r € A1 i g1() # go(2) }U{x € Ay @ go(w) # g3()},

so we get

p({z € Ay : gi(z) # g3(2)})
<p({z e Ar: gi(z) # g(2)}) + p({x € Ay go(x) # g3(x)})

2 (u(A2) — p(AD) + 2 ((As) — p(4)

1

:g(u(As) — 1(Ay)). O

The following proposition is the core of the proof of Theorem [2.6]

Proposition 2.12. For every good couple (A,g) with u(A) < 1 — ¢,
there exists a good couple (A’,g") such that (A, g) < (A',¢") and p(A"\
A) > 0.

We would like to say that for every good couple (A, g) there is B C
X\ A such that ®(f)(B)N®(g)(A) = 0. When this is the case, we can
conclude using Proposition [2.9) The problem is that this is not always
possible, but it is possible in a finite number of steps.

Lemma 2.13. There are k € N with k < 1/¢ and two sequences
{D;}ick and {E;};<i of measurable subsets of X of positive measure
such that

(1) the {D;}i<i are pairwise disjoint as are the {E;}i<y,

(2) Dy C X\ A and D; C A fori>1,

(3) Exy C X\ ®(9)(A) and E; C ®(g)(A) fori <k,

(4) ®(f)(Dx) = By, and Ey_1 = ©(g)(Dy).

Proof. Set By := X \ A and C} := ®(f)(By). For i > 2 define recur-

sively

B; == ®(9) " H(Ci_1 N ®(g)(A)) and C; := ®(f)(B;).



ORBIT FULL GROUPS FOR LOCALLY COMPACT GROUPS 19

B aga) B b
D, .. ..DQ ; A ‘. ..D3 ‘.

In the figure ®(f) acts vertically and ®(g) acts diagonally.
Since ®(f)(X \ A) C ®(g)(A), we can not use Proposition
directly.

Observe that {B;}; are pairwise disjoint as are the {C;};. Suppose
now that for [ > 1, we have that C; C ®(g)(A) for all ¢ < [. Since
®(g) and @(f) preserve the measure, we have that u(C;) = p(B;) for
all 4 < [ and hence we have that {u(B;) < 1 — u(B;). By hypothesis
u(By) = ¢, 501 < 1/e — 1. Therefore there exists k < 1/¢, such that
CY is not contained in ®(g)(A) and C; C ®(g)(A) for every i < k.

Put Ej := Cy \ ®(g9)(A) and set Dy, := ®(f)"'(E)). Observe that
Dy, C By and define recursively E; := ®(g)(D;;1) and D; := ®(f)"Y(E;).

U

Proof of Proposition[2.13 Consider the families {D;}i<x and {E;}ick
defined in the previous lemma. By Proposition 2.9] there exists a good
couple (Ay, g1) such that A; C D; and ®(g1)(A1) C ©(f)(Ay) C Ey.
For i € {2,...,k}, whenever A; ; is defined, we set

Aj = ®(g) " (®(gi-1)(Ai—1)) C Ds.
For every i such that A; is defined, Proposition implies that there
is a good couple (A4;,g;) such that A; C Al is non-negligible and
D(g:)(A;) C O(f)(A;) C E;. Put B, := Ag. Fori e {1,...,k— 1}, we
define recursively B; := ®(g;) " (®(g)(Bis1))-
Set A’ := AU B; and define
von o ogle)  ifre A\ UpeB,,
g(z) = { gi(x) ifxz e B,

By construction, ®(¢’) : A’ — X is injective and preserves the
measure. Moreover (A’,¢') is obtained by cutting and pasting N-
good couples, so it is an N-good couple. Let us finally check that
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(A,g) < (A, ¢). Clearly we have A’ O A and u(A’\ A) = u(By) > 0.
Moreover

p{r € A: g(z) # ¢'(2)}) < p(UizeBi) < kp(Br) < = (u(A") — p(A)).

O

o | =

Step 3. We verify now that we can apply Zorn’s Lemma to the set of
good couples.

Proposition 2.14. FEvery chain for < has an upper bound.

Proof. Let us assume for the moment that {(A,,g,)}» is a countable
chain of good couples. For every n € N set

B, ={x € A, go() = gnt1(2)}, Ch:i=Mg=pnB, and A:=U,C,.

Clearly A C U, A,, and we now check that the two measurable subsets
have the same measure. In fact, since {A,}, and {C,}, are increasing
sequences, for every n > 0, there is K € N such that

M(UnAn) - M(AK) <n and M(Uncn) - :U’(OK) <1,
hence we have
1(UnAn) — p(A) <21+ p(Ag) — p(Cx) = 2n + p(Ak \ Ck)
=21+ p(Ax N (Up=x X \ Bi)) = 20 + p(Upsx Ak \ By)

1
<21+ Z p(Ax \ Br) < 20+ B Z (A1 \ Ag)

k>K k>K

1
<2+ —p(Uiera A\ Ax) <20+ 2,
As n is arbitrarily small, we get that A = U, A,, almost everywhere.
For z € C,,, observe that ¢,(z) = ¢,+;(z) for every j > 0. We define

g(x) == gp(x) if xe€C,.
The couple (A4, g) is obtained by cutting and pasting N-good couples

so the couple is N-good. Moreover A O U, A,, almost everywhere and
for every n € N, we have

pr € An galn) # 90) < p(ANCH) < = Ak Ag) = S (u(A)—p(AL).

IS
k>n

Therefore the couple (A,g) is an upper bound for the countable
chain. Consider now an arbitrary chain {(A., ¢.)}cec and set A =
sup.co 4(Ae). If there is a good couple (A, g.) such that p(A.) = A,
then this couple is an upper bound of the chain and there is nothing

to prove. Suppose that this is not the case and consider a subsequence
{(Ay, gn) }nen of the chain such that lim, u(A,) = A. Let (A, g) be an
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upper bound for this sequence. Given any element of the chain (A, g.)
there exists n such that u(A.) < p(A,) and hence (A, g.) < (An, gn) <
(4, ). O
End of the proof of Theorem . Let f € [R¢g|. By definition of the
topology of convergence in measure, a base of neighborhoods of f is
given by the open sets

Un={g€Ral: p({reX: gla)e Nf(@)}) >1-¢},

where ¢ > 0 and N C G is a neighborhood of the identity. For every
neighborhood of the identity N C G, Proposition 2.9 implies that the
set of good couples for f is not empty. For £ > 0, Proposition [2.14] tells
us that there is a maximal good couple (A, g). The maximality of the
couple and Proposition imply that u(A) > 1 —e. So by Lemma

there is ¢ € [72\@/]1) such that ¢’ € U, .

3. TOPOLOGICAL RANK OF ORBIT FULL GROUPS

We now use Theorem to show that the topological rank of orbit
full groups associated to free measure-preserving actions of unimodular
locally compact groups is equal to two.

Theorem 3.1. Let G be a locally compact unimodular non-discrete and
non-compact Polish group. For every measure-preserving, essentially
free and ergodic action of G, there is a dense G of couples (T,U) in
[Rg)* which generate a dense free subgroup of [Rg| acting freely. In
particular, the topological rank of [Rg] is 2.

Proof. Let G be a locally compact unimodular, non-discrete and non-
compact Polish group. Suppose that G acts on the probability space
(X, 1) preserving the measure, essentially freely and ergodically. Let
us denote by Fy the free group on two generators and observe that

{(T, U) € [Ra]?: (T,0) = [R¢] and (T, U) = FQ}

is a G, so we have only to prove that it is dense.

By Theorem there exists a (not necessarily free) action of a
countable group I' on a measure space (Y, v), such that R¢ is orbit
equivalent to the product action of S* x I" on S' x Y. Fix a copy of Z
in S! generated by an irrational rotation; then Z x I is dense in S! x I'.
By Theorem [2.1], we have that [Rzxr| is dense in [R¢].

The equivalence relation Rz« has cost 1, by Proposition VI1.23 of
|Gab00] (note that the proof only uses that I'; acts freely). So we
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can apply Theorem 1.7 in [LM15] to get the existence of an aperiodic
T € [Ryzxr] such that
— .
{U € [Raxr] : (T, )" = [Raxr] and (T,U) = FQ} C [Raxr]
is a dense subset of [Rzx«r] with respect to the uniform topology. This
concludes the proof since by Theorem 4.4 of [CM16|, the conjugacy
class of T is dense in [Rg] for the topology of convergence in measure.

U

4. THE ORBIT FULL GROUP AS A UNITARY GROUP

In this section, we study the relationship between orbit full groups
arising from measure-preserving free actions of locally compact groups
and the associated von Neumann algebra. Throughout this section, G
will be a locally compact, second-countable unimodular group which
we equip with a left and right invariant Haar measure m.

Let us recall the crossed product construction. See the first chapter
of [vD78§]| for more about this. Note however that our left von Neumann
algebra is the right von Neumann algebra in Van Daele’s book.

Definition 4.1. Let GG be a locally compact Polish group. For a
measure-preserving free action of G on the probability space (X, pu),
the crossed product L>*(X, ) x G is the von Neumann algebra on
L?(G x X, m x u) generated by

e the set of unitary operators {\, X k;}ree where h +— ky, is the
Koopman representation of G on L*(X, 1) and h +— )\ is the
left regular representation,

e the abelian algebra L>°(X, ;1) which acts on functions £ € L?(Gx
X, 1) by multiplication: for all f € L*(X, u), we let f¢(g,x) =

f(@)€(g, ).

We will show that this von Neumann algebra is generated by the
orbit full group [R¢|, which can be seen as a unitary group as follows.
Recall that since we assume that the action of G is essentially free, the

full group [R¢] is isomorphic as Polish group to [R¢], as explained in
Section [L.2l

—_~—

Definition 4.2. Let the full group [R¢] almost-act on (G x X, m x )
by

—_~—

g-(h,z) = (g(x)h,g(x)x) for all g € [Rg], h€ G,z € X
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and denote by 7 the associated Kooman representation on L?(G x X).

That is for every f € L*(G x X) and g € [R¢|, we have
(g) - f(h,z) = fg(x)""h, g(x) " 2).
Proposition 4.3. Let G' be a unimodular non-compact, locally compact
Polish group acting freely on (X, u).
(1) The map 7 is a continuous embedding of [R¢| into U(M).
(2) The full group of Rg consists of the intersection of Aut(G x X, m x
w) withU(GxL>®(X)), seeing both as subgroups of U(L*(G'x X, mx
w)). In particular, it is a closed subgroup of U(L*(G x X, m X p)).

(3) The full group generates the von Neumann algebra, that is m([R¢g])" =
L*(X, p) x G.

Proof. (1) Firstly, observe that the action of [R¢] on G x X is measure
preserving, so that 7 is a unitary representation.

Let us now see why n(G) C U(M). For this, note that the com-
mutant of M = L>(X) x G is generated by the operators f for f e
L®(X) = L*(X) (acting by (f&)(h,z) = f(h'x)é(h,x))) and the
operators 1 X p, where p, is the right regular representation, see [vD78,
Thm. 3.12|. For g € [R¢], we have

w(9) fE(h,x) = (f€)(g(x) "R, g(z) ')

= f(h™'2)&(g(2) " h, g(a) ')

= fr(9)&(h, x)
and we also have for ¢’ € G

m(9)pwé(h,x) = (pw€)(g(a) "' h, g(2) ')
= &(g(x) " Rl g(x) ')
= pm(9)§(h, @),

which concludes the proof.

(2) We will prove that every automorphism 7" € Aut(G x X) which
commutes with the operators f and py, is in the image of the full group.

Fix such a T and put T'(g,z) = (t1(g, ), t2(g,x)). Since T commutes
with pp, we obtain that

Tpn(g, ) = (ti(gh,v),t2(gh, v)
(tl(gv l’)h, tQ(gv l’))

so that t3(g,x) only depends on z, and t;(gh,z) = t1(g,x)h. If we
set g(z) := t1(1,z) and t(z) := t3(1,z), then we have T(h,z) =
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(g(z)h,t(z)). Now we observe that since T preserves the measure,
T : X — X also does:

m x u(T"H(A x B)) =m x u({(h,z) : g(x)h € A and t(z) € B)
=m x p({(h,x) :h € g(z)"'A and x € t7'(B))

—/m 2)7 A) X105 (@) dpa(z)

- <A>/th1 (@)du(x)
— m(A)u(t(B))

Finally, we exploit the hypothesis that 7' commutes with the opera-
tors f,

T fe(h,x) =f (™ g(2) " t(2))é(g(2)h, t())
JTY(h ) =f (W 2)E(g(2)h, ().

Since this is true for every f and &, we must have that g(x)z = t(x)
and hence T is in the image of the full group.

(3) Since A x k(@) is already a subgroup of m([R¢]), by definition of
the crossed product it suffices to show that 7([R¢])” contains L>(X) .
For this, it is enough to show that for every A C X the characteristic
function x4 belongs to 7([R¢])”.

By Theorem [1.15] we may assume that X = S; x Y, and that Rg =
Rs, xr, where S! x I" acts via a product action. Since G is non compact,
I" has infinite orbits, but recall that the action is not necessarily free.

Let Rr the equivalence relation of the action of I' on Y and Rr the
equivalence relation of the action of I" on S' x Y obtained by making
' act trivially on S!. Observe that Rr = Rr xS! as measure spaces
and by Theorem [1.15] (i), we have a measure preserving isomorphism
between (G x X, m x p) and (Rp xS' x S', 7 x L x L).

By a well-known result of Dye (see e.g. [Kecl(, Thm. 3.5]), we can
choose an aperiodic element T' € [Rp] C [Rrysi]. Now let Tx\4 be
the first return map induced by 7" on X \ A. It is easy to check that
the sequence (T)?\ 1 )nen tends to x4 weakly as operators on the Hilbert
space L2(7~2,F). Since Rrxst = Rr xS! x S! and Rr = Rr xS!, we
deduce that (T),en tends to x4 weakly as operators on the Hilbert
space L?(Rrxst) = L*(Rg). Therefore the sequence (T, ,)nen tends
to xa weakly in 7([Rg])”. O
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5. EXTREME AMENABILITY OF ORBIT FULL GROUPS

Let us recall that a Polish group is extremely amenable if when-
ever it acts continuously on a compact space, the action has a fixed
point. It is amenable if whenever it acts continuously by affine trans-
formations on a compact subset of a locally convex topological vector
space, then the action has a fixed point.

The aim of this section is to extend Theorem 5.7 of Giordano and
Pestov [GPOT7] to the locally compact setting.

Theorem 5.1. Let G be a locally compact, non-compact unimodular
Polish group. Suppose that G acts freely on the probability space (X, 1)
preserving the probability measure. Then the following are equivalent.

(1) G is amenable.
(11) [Rq] is amenable.
(111) [R¢] is extremely amenable.

Before we prove the theorem, let us recall the following useful well-
known result which follows from Remark 5.3.29(2) and Corollary 6.2.12
of [ADROQ].

Theorem 5.2. Let G be a locally compact, non-compact unimodular
Polish group. Suppose that G acts freely on the probability space (X, )
preserving the probability measure. Then G is amenable if and only if
the crossed product L°(X, ) x G is injective.

We will also need the following lemma, which provides basic ex-
tremely amenable orbit full groups.

Lemma 5.3. Let G be a compact metrisable group acting freely on a
standard probability space (X, u). Then the associated orbit full group
15 extremely amenable.

Proof. As a consequence of [Var63, Thm. 3.2|, we may view X as a
Borel G-invariant subspace of a compact continuous G-space K. By
|[Gao09, Prop. 3.4.6], there is a Borel transversal® for the G-action on
K, in particular there is a Borel transversal Y for the G-action on X.

Let 7 be the Borel map with takes every x € X to the only y € Y
such that y € G - z, and equip Y with the pushforward measure v :=
. Let A be the Haar probability measure on G. By uniqueness of
the Haar measure, the Borel G-equivariant bijection

O (G XY, Axv)—= (X, p)
(9.y) —~g-y

5A Borel transversal is a Borel subset which intersects every G-orbit at exactly
one point.
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is measure-preserving. Moreover, under the identification of X with
G x Y, the orbit full group becomes the group LO(Y, v, Aut(G,\))
equipped with the topology of convergence in measure. We now have
two cases to consider:

e (5 is discrete hence finite, in which case (Y,v) has to be non-
atomic and Aut(G,\) is a finite permutation group, in par-
ticular it is a compact group. Then by a result of Glasner (see
[Pes06, Thm. 4.2.2]), the group LO(Y, v, Aut(G, \)) is extremely
amenable.

e ( is non-discrete, in which case Aut(G, \) is extremely amenable
by a result of Giordano and Pestov (see |[Pes06, Thm. 4.5.15]),
which implies that L(Y, v, Aut(G, \)) also is.

In either case, we see that the orbit full group LO(Y, v, Aut(G, \)) is
extremely amenable as desired. O

Proof of Theorem[5.1]. Clearly (iii) = (i), so we will only have to show
that (i) = (i#i) and that (i7) = (7).

(1) = (iii): Suppose the group G is amenable. By Theorem [1.15]
we can assume that X decomposes as a product (Y x St v x \), and
that Rg = R X (S! x S') where R is a measure-preserving countable
aperiodic amenable equivalence relation. By Connes-Feldman-Weiss’
theorem |[CEWSI]|, we can actually assume that R = Rp where I" :=
D,.cn Z/2Z is acting freeely on (Y, v).

Let then H :=I' x S, then we have a natural H-action on Y x S!
which induces the same equivalence relation as G. We thus only have to
show that [Ry]| is extremely amenable. The group H is naturally writ-
ten as an increasing union of compact groups K, := (@, Z/27) xS'.

Note that the reunion U,[K,], is dense in [H]|,. In fact given for
every f € [H|, and every ¢, there exists N > 0 such that

A={re X: f(x) € Ky}

has measure bigger than 1 —e. Therefore by Lemma [2.7 we can extend
fa, the restriction of f to A, to an element of [Kx|,, which is closed to

f

By Theorem the group [H|p is dense in [Ry], so the reunion
U, (K] is dense in [Ry]. Observe now that U,[K,]p C |J,[Rk,| and
hence J,,[Rk,] is dense in [Ry]. Finally observe that the full groups
[Rk,] are extremely amenable by Lemma [5.3] So [Rp] contains an
increasing sequence of extremely amenable subgroups, whose union is
dense, therefore [Ry| = [R¢] is extremely amenable.
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(74) = (i): Suppose the full group [R¢] is amenable. By Theorem
the amenability of GG is equivalent to the injectivity of the crossed
product L>®(X, ) x G. Moreover by the celebrated result of Connes
[Con76, Thm. 6], the injectivity of a von Neumann algebra M C B(H)
is equivalent to Schwartz’s property (P), which means that whenever
x € B(H), the closed convex hull of (uxu*)ycu(nr) intersects the com-
mutant of M. It thus suffices to prove that L>°(X) x G has Schwartz’s
property (P).

To this end, let x € B(H). Then the convex closed hull K of
(uzu* )ueri(Loe (x,mxc) is @ weakly compact convex set onto which [R¢]
acts continuously by conjugation. Since [R] is amenable and this
action is the restriction of a linear hence affine action, there exists
xo € K which is fixed by the conjugation action. This means that x( €
T([R¢]) = (7([R¢])”) so xy belongs to the commutant of L*(X) x G
by item (3) of Proposition [4.3] which concludes the proof. O

The proof of (i7) = (i) actually shows that the von Neumann algebra
generated by an amenable unitary group is injective. Note that de la
Harpe proved that a von Neumann algebra is injective if and only if its
unitary group is amenable [dIH79]. Our proof of (ii) = (i) is essentially
a reformulation of his.

APPENDIX A. HAAR MEASURES FOR EQUIVALENCE RELATIONS

The content of this appendix is standard and can be carried out in
a much more general setting (see [ADRO0]). However, extracting the
statements we need can be difficult, so we give complete proofs for
which we claim no originality.

A.1. Invariant Haar systems. When G =T is a discrete group, the
first-coordinate projection m : Rr — X has countable fibers, which
allows us to define a Haar measure M on Rr by integrating the
counting measure over the fibers: for all Borel A C Rr,

M(A) = /X I ({}) 1 Al du(z).

The definition of a Haar measure in a more general context of locally
compact groups is however more complicated.

Definition A.1. Let R be a Borel equivalence relation on (X, u). An
invariant Haar system on R is a family (m,).cx of Borel measures
on X which satisfy the following properties:

(1) (invariance) There is a full measure subset X’ of X such that for
all (z,y) e RN (X' x X'), my =m,,.
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(2) Forall x € X, m, is non trivial and supported on [z|g (i.e. m,(X\
[z]r) = 0 and m,([z]z) > 0).

(3) (measurability) For all Borel A C R, the map x — m,(A,) is Borel,
where A, :={y € X : (z,y) € A}

(4) (o-finiteness) There exists an exhausting increasing sequence of
Borel subsets (A,,) of R such that for alln € N, one has [, m,((Ay)s)du(z) <
+00.

(5) For all full measure subsets X’ of X, one has m,(X \ X’) =0 for
p-almost all x € X.

Remark A.2. Note that condition allows one to transport a Haar
system on R to a Haar system on R’ whenever R and R’ are orbit
equivalent.

Example A.3. Suppose R is a Borel countable non-singular equiva-
lence relation on (X, u). Then an invariant Haar system on R is given
by letting m, be the counting measure on [z]x.

Example A.4. Suppose G is a locally compact Polish group with right
Haar measure A. Then given an essentially free measure-preserving G-
action on (X, i), one can endow R with an invariant Haar system
(Az)zex given by the natural identification g +— ¢ - z between (G, \)
and [x]gz. In other words, given a Borel subset A of G and z € X,
we set Az (A - x) := A(A). Note that such an identification only makes
sense when x belongs to the free part of the action, so when x does not
belong to it we define A\, to be the Dirac measure on x.

Let us check that the field of measure (\;).ex is an invariant Haar
system. For a Borel subset A of G, we have

Mol A @) = Aga(Ag g - ) = N(Ag™) = A(A) = m, (4 - ),

so condition (1) is satisfied. One can easily check that conditions (2),
(3) and (4) are satisfied, while (5)) is a consequence of the Fubini the-
orem and the fact that the G-action preserves the measure: if X’ has
full measure in X then for almost all x € X, for A-almost ¢ € G one
has g -z € X'.

Note that when G is discrete, this definition of the Haar measure
coincides with the previous one.

Remark A.5. Actually, as the expert reader knows, one can define a
Haar measure on R regardless of the freeness of the G-action, when-
ever GG is locally compact Polish. But since the construction of the
measure is significantly more complicated, and since we will only deal
with non-free actions when G is discrete, we chose not to present this
more general setting.
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Example A.6. If (Ry, (m;)zex) and (Ry, (m?),ey) are measured equiv-
alence relations on (X, 1) and (Y, v) respectively, then (R; x Ra, (ml x
M) (zy)exxy) is a measured equivalence relation on (X x Y, x v). A
particular case of interest to us is when R; is the transitive equiva-
lence relation and R, is a countable measure-preserving equivalence
relation. Indeed by Theorem every measured equivalence relation
arising from a free action of a non discrete unimodular locally compact

group is of this form.

Remark A.7. There can be a lot of different invariant Haar systems
on an equivalence relation R, even in the ergodic case. For instance,
if R is the transitive equivalence relation on (X, ), then any choice
of Borel o-finite measure v on X which is absolutely continuous with
respect to p yields an invariant Haar system (m,).cx given by m, = v.
In the next section, we will add a condition which yields uniqueness:
unimodularity.

By Weil’s theorem, a Polish group which admits a right-invariant
measure is locally compact. Similarly, the existence of an invariant
Haar system on an equivalence relation forces the acting group to be
locally compact. Let a Polish group G act freely on (X, 1), and suppose
that there exists an invariant Haar system (m,).cx on Rg. Then we
can define a natural right-invariant measure on G as

AA) = /me(A~x)d,u(ac), for A C G.

This measure is not always o-finite®, but we now show how this can be
circumvented.

Theorem A.8. Let G be a Polish group acting freely on (X, p) in a
measure-preserving manner. If Rg has an invariant Haar system, then
G 1s locally compact.

Proof. We will show that there exists a non-trivial right-quasi-invariant
Borel probability measure on (G. This implies that G is locally compact
by Mackey’s theorem [Mac57, Thm. 7.1].

Let (m;) be an invariant Haar system on R, let (A,,) be a partition
of R¢ into Borel sets of finite measure. We define a new Haar system
(n,) of probability measures on Rg by putting, for every x € X and

SLet I' = Z/2Z act on [0,1] via T :  +— (1 — x) and take a T-invariant function
f :[0,1] — [0,4o00[ which is not integrable, then m, = f(x)(d + dr(,)) is an
invariant Haar system but the associated measure on Z/2Z is infinite.
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Borel A C X,

w1 m((ANA,),)
_22n+1 (An):r)

n—=

Then our Haar system satisfies all the axioms of invariant Haar systems
except of course invariance (condition (I))) , which can be replaced by

(1’) (quasi-invariance) There is a full measure subset X’ of X such
that for all (z,y) € RN (X' x X7), 2] = [n,]-

As before, we can integrate the Haar system to obtain a probability
measure on G:

ANA) = /Xnm(A -z)dp(z), for A C G.

To complete the proof, we will show that A is quasi-invariant with
respect to the right multiplication. For this, suppose that A\(A) = 0,
then by definition for almost all x € X one has 7,(A - ) = 0 which
implies by (1) that for every g € G and almost all x € X, n,(A-2) = 0.
Since moreover we have that g.u = p, we can conclude the proof:

NAg) = [ mlAgdn(o) = [ nyo(An)in@) =0. D

A.2. Unimodularity. For a measured equivalence relation R on (X, ),
the pre-orbit full group [R]p is the group of all Borel bijections
T : X — X which preserve u, and such that for all x € X, one has
(z,T(x)) € R. The pre-orbit full group has two natural actions on R:

e the left action defined by Iy (z,y) = (T(z),y) for all (z,y) € R

and
e the right action defined by rr(z,y) = (z,T(y)) for all (z,y) €
R.
These two actions are conjugated by the flip o defined by o(z,y) :=

(y, 7).

For A C R, as in the last section, we put A, = {y € X : (z,y) € A}.
Every invariant Haar system (m,).cx allows us to equip R with a
natural measure M defined as follows

= / mg(Az)dp(z)  for every A C R Borel.
X

Note that condition on (m,) corresponds to the o-finiteness of
(R, M).

Lemma A.9. The left action of the pre-full group on R preserves M.
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Proof. For all Borel A C X and all T € [R]p, one has

M(lpA) = /X Mo ((IrA)e)dp(z)
_ /X M1 (lrA),) dp(x)
= [ (A s)dn(e)
:/me(Ax)du(x)zM(A%

so the measure M is preserved by the left action of the pre-orbit full
group. U

Denote by Aut(R, M) the group of measure-preserving Borel bijec-
tions of R, two such bijections being identified up to measure zero.
Then the left action defines a morphism [R|p — Aut(R, M) which
factors through the orbit full group [R]. So the orbit full group (pre-)
acts in a measure-preserving manner on (R, M).

Definition A.10. An invariant Haar system (m,) on a Borel equiva-
lence relation R is called unimodular if the flip preserves M.

As the name suggests, free actions of unimodular locally compact
groups give rise to unimodular Haar systems.

Proposition A.11. Let G be a unimodular locally compact group act-
ing essentially freely on (X, 1) and let X be a Haar measure on G. Then
the associated invariant Haar system (\;)zex on Rg given by Example

[A.]] is unimodular.

Proof. By Lemma [1.1] we may assume that G acts freely. Let ¢ :
X X G — R¢ the Borel identification given by ®(x,g) := (z,g-z). By
definition, the measure M on R¢ obtained by M(A) = [, A\o(A,)du(x)
is just the product measure, @, (u®\) = M. Therefore in order to show
that (\;), is unimodular, we need to show that the map

U:=Pogod ' (X xGud\) = (X xG u®\)

is measure preserving. Observe that W(z,g) = (gz,¢9~!). For a set C,
let xc denote its characteristic function. Let A C X and B C G be
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Borel sets, then we have

U, (nt®@AN)(Ax B) = / Xaxs(g - 2,9 )dp @ Mg, x)
XxG

N /x GXA(Q ~2)xp(g™")dp @ Mg, x)

:/GXB<91) (/XXA@':U)d/‘(];)) dA(9)

- /G ys(g ) u(A)dA(g)
— AB)u(A),

where the last three equalities are respectively consequences of Fubini’s
theorem, the fact that GG preserves the measure and the unimodularity
of G. By uniqueness of the product measure, we conclude that W, (u x
A) = p X A as desired. O

Remark A.12. Let G be a unimodular locally compact Polish group
acting essentially freely on (X, i), let A be a Haar measure on G and let
(Az) be the associated unimodular invariant Haar system on R¢. Then
by the above proposition the right [R¢]-action on (Rg, M) gives an
embedding [R¢] < L%(X, u, Aut(G, \)) (in other words, the full group
acts on every Rg-class in a measure-preserving manner.). In particular,
if (Y, v) is a standard o-finite space, then the group LO(X, u, Aut(Y,v))
contains as a closed subgroup every orbit full group arising from a
measure-preserving free action of a non-discrete unimodular Polish lo-
cally compact group. For a similar statement in the discrete case, see
[KM15], Prop. 13].

Theorem A.13. Let G be a Polish group acting freely on (X, p). If
there is a unimodular invariant Haar system (mg).ex on Rg, then G
15 locally compact unimodular.

If the action s moreover ergodic, then there exists a constant ¢ > 0
such that for almost all x € X, one has m, = c),, where \, is the
invariant Haar system associated to a fived Haar measure \ on G.

Proof. First note that by Theorem [A.8] G has to be locally compact.
We fix a left-invariant Borel probability measure A on GG. For every x in
the free part of the action, consider the G-equivariant bijective Borel
map ¢, : [x]g — G defined by ¢,(y) - © = y; then the pushforward
measure 17, := (¢,).m, is a o-finite measure on G.

Since the right action of the orbit full group [R] on (R, M) is conju-
gate to the left action by the flip, unimodularity yields that the right
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action of [R] on R preserves M. In particular, the right action of G on
R preserves M, so for a fixed g € G, and any A C R we have

/X a(Ag)dp(z) = /X a((r(9) A)s)dpi(z) = /X (g AL)da(x).

By the uniqueness of disintegration, this implies that for almost all
x € X, gom; = m,. Then by Fubini’s theorem, for almost all x € X
and A-almost all g € G, g.m, = m,. Since ¢, : [z]g — G is left
G-equivariant, this implies that for almost all x € X, there is a full
measure subgroup of G which preserves 7, when acting on the left.
But every full measure subgroup of G equates G (see e.g. [Zim84
Prop. B.1]), so for almost all x € X, one has that 7, is a Borel o-finite
left-invariant measure on (G. By uniqueness of the Haar measure, we
conclude that for almost all x € X, the measure 7, is a multiple of \.

Fix a Borel subset K of G such that A\(K) = 1. For all z € X, we
let ¢, = n,(K), then x — ¢, is Borel and we have 1, = ¢, A. Moreover
for all (g,z) € G x X,

Cgr = Nge(K) = Mg (Kgz) = m,(Kgr) = n.(Kg),

so that ¢, = A(g)c,, where A is the modular function on G.

Let g € G, let a > 0 be an essential value of the function z — ¢, and
consider the set of positive measure A := {z € X : a/2 < ¢, < 3a/2}.
By Poincaré’s recurrence theorem for almost all z € A there is an
infinite subset S, C N such that g¥z € A for every k € S,. So for
x € A we have that

a/2 < A(gM) e, = A(g)¥e, < 3a/2  forall k € S,,

which implies that A(g) = 1, and we conclude that G is unimodular.
Therefore ¢y, = ¢, and the function z + ¢, is G-invariant. So
whenever the G-action is ergodic, ¢, is a.s. constant, which yields the

second part of the theorem.
O

Let us point out that when the acting group G is already known to
be locally compact, the freeness hypothesis above can be replaced by
almost freeness, since we know by Lemma that the free part of the
action is a Borel set and invariant Haar systems restrict well to full
measure Borel subsets. So unimodular locally compact groups form a
closed class under orbit equivalence among locally compact groups.
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