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Abstract. The Maréchal topology, also called the Effros-Maréchal topology, is
a natural topology one can put on the space of all von Neumann subalgebras of
a given von Neumann algebra. It is a result of Maréchal from 1973 that this
topology is Polish as soon as the ambient algebra has separable predual, but the
sketch of proof in her research announcement appears to have a small gap. Our
main goal in this paper is to fill this gap by a careful look at the topologies one can
put on the space of weak-∗ closed subspaces of a dual space. We also indicate how
Michael’s selection theorem can be used as a step towards Maréchal’s theorem,
and how it simplifies the proof of an important selection result of Haagerup and
Winsløw for the Maréchal topology. As an application, we show that the space of
finite von Neumann algebras is Π0

3-complete.

1. Introduction

In a 1973 research announcement, Odile Maréchal introduced a natural Polish
topology on the space of von Neumann algebras acting on a given infinite dimensional
separable Hilbert space [Mar73], inducing the standard Borel space structure that
Effros had defined thereon in 1965 [Eff65]. Although Maréchal’s results already
showed how this topology could lead to streamlined proofs for results on Borel
subsets of the space of von Neumann algebras, her work faded from memory until
Haagerup and Winsløw published two beautiful papers in which this topology plays
a central role.

While their first paper could be seen as a direct continuation of Maréchal’s work, in
the sense that they showed that many natural maps (including the commutant map)
were continuous on the space of von Neumann algebras [HW98], their second work
revealed an unexpected connection with Connes’ embedding conjecture [HW00].
Indeed, they proved that the latter was equivalent to the density of the isomorphism
class of the injective type III1 factor in the space of all von Neumann algebras acting
on a separable infinite dimensional Hilbert space. This formulation of their result
relies on the Baire category theorem, and hence on Maréchal’s result that the space
of von Neumann algebras on a separable Hilbert space is Polish. However, detailed
proofs of Maréchal’s theorem have never appeared. Our first goal in this paper is to
provide such a proof. Here is a precise statement.

Theorem 1 (Maréchal). Let M be a von Neumann algebra with separable predual,
denote by S(M) its space of von Neumann subalgebras (with the same unit as M),
which we identify to their closed unit balls. Then S(M) is Polish for the Vietoris
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topology associated to the weak topology on the space of closed subsets of the unit
ball of (M)1.

There is actually a small gap in the sketch of proof presented in [Mar73]: the
space of unit balls of ultraweakly closed subspaces of B(H) is not compact (see
Counterexample 4.5). We fill this gap by showing that the space of ultraweakly
closed subspaces of B(H) is nevertheless Polish as soon as H is separable, which
suffices to make Maréchal’s proof go through (see Theorem 6.3).

We study more generally the space of weak-∗ closed subspaces of a dual space
E∗, and show the latter is always Polish as soon as E is separable (see Corollary
4.11) Our Theorem 4.10 moreover shows that the well-known polar identification
between norm closed subspaces of E and weak-∗ closed subspaces of the dual is a
homeomorphism, endowing the corresponding grassmanian spaces with the following
topologies:

• the space G∥·∥(E) of norm closed subspaces of E is endowed with the Wijsman
topology associated to the norm;

• as in Theorem 1, the space Gw∗(E
∗) of weak-∗ closed subspaces of E∗ is

endowed with the Vietoris topology induced by the space of weak-∗ closed
subsets of its unit ball (E∗)1, identifying a subspace to its closed unit ball.

Finally, as our title suggests, our paper relies on a version of Michael’s selection
theorem that we prove in Section 5. This theorem allows one to continuously select
elements from closed convex sets under a weak continuity assumption with respect
to the lower topology (see Section 3.1 for its definition). One also has to make some
assumptions on the ambient normed space. We did not strive for generality and
focused on having a short self-contained proof instead; a more general version of
our Theorem 5.2 can be found in [Sak13, Thm. 3.8.8]. Our density result (Corollary
5.5) appears not to have been explicitly stated in the literature but is of crucial
importance towards our two applications.

The first application is the continuous selection of a dense subset of the unit ball
of an ultraweakly closed subspace, a result due to Maréchal which she proved via
a different approach (Proposition 6.1). This selection result is a key step in her
proof of the polishness of the Maréchal topology. The second application is the
Haagerup-Winsløw selection theorem, which is the following very useful statement.

Theorem 2 (Haagerup-Winsløw). Let M be a von Neumann algebra with separable
predual, denote by S(M) its space of subalgebras (with the same unit as M), endowed
with the Maréchal topology. There is a sequence of Maréchal to strong-∗ continuous
maps xn : S(M) → M such that for every N ∈ S(M), {xn(N) : n ∈ N} is strong-∗
dense in (N)1.

Just like Maréchal’s proof of her selection result, the proof of Haagerup and
Winsløw does require some Hilbert space ideas, endowing B(H) with a pre-Hilbert
space structure. However, our proof does not. We simply identify the lower topolo-
gies associated to the weak topology and to the strong-∗ topology (Proposition 6.4),
and then we apply Michael’s selection theorem.

As an application of Haagerup-Winsløw’s selection theorem, we conclude our pa-
per with a complexity calculation for the subset of finite von Neumann algebras
acting on a separable Hilbert space. Indeed, the presence of a topology on the space
of von Neumann subalgebras of B(H) allows one to analyze in a much more precise
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manner Borel subsets thereof, via the so-called Borel hierarchy which roughly keeps
track of how many countable unions/intersections one needs to carry out in order to
obtain a specific subset, starting from closed/open subsets. The following result says
that the set of finite von Neumann algebras is a countable intersection of countable
unions of closed subsets, and that this is sharp.

Theorem 3. Let H be a separable infinite-dimensional Hilbert space. Denote by
Sfin(B(H)) ⊆ S(B(H)) the set of finite von Neumann subalgebras. Then Sfin(B(H))
is Π0

3-complete for the Maréchal topology.

The fact that the set of finite von Neumann algebras is Borel is due to Nielsen
[Nie73, Thm. 3.2], but his proof relies on the separation theorem, and thus does not
provide any additional complexity information. Our proof is much more elemen-
tary and relies on the fact that finite von Neumann algebras are exactly those for
which the adjoint map is uniformly continuous for the strong topology on bounded
sets (see Theorem 6.6). Finally, this result should be compared to Haagerup and
Winslow’s Corollary 4.10 from [HW98], which implies that the set of finite factors is
Σ0

2-complete in the Polish space of factors. The increase in complexity from factors
to general von Neumann algebras reflects the fact that B(H) contains a copy of⊕

n∈N B(H), and that
⊕

n Mn is finite iff for every n ∈ N, the von Neumann algebra
Mn is finite (see the proof of Theorem 6.7).

Here is an outline of the paper. In Section 2, we collect some preliminary re-
sults on Polish spaces and on the topologies on B(H). In Section 3, we review
three topologies one can put on the space of closed subsets of a topological space:
the lower topology, the Vietoris topology (in a compact Hausdorff space) and the
Wijsman topology (in a metric space). Section 4 is devoted to the proof of our
duality theorem, which identifies the Wijsman topology on closed subspaces of a
normed space to the Vietoris topology on unit balls of weak-∗ closed subspaces of
the dual. In Section 5, we state and prove a version of Michael’s theorem adapted
to our needs. Finally Section 6 is devoted to three applications, namely Maréchal’s
theorem (Theorem 1, see Theorem 6.3), the Haagerup-Winsløw selection theorem
(Theorem 2, see Theorem 6.5), and finally Theorem 3 (see Theorem 6.7).
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(Project AODynG: ANR-19-CE40-0008 and Project ANR ANCG: ANR-19-CE40-
0002).

2. Preliminaries

2.1. Polish spaces. By definition a Polish space is a topological space which is
separable and whose topology admits a compatible metric. Since metrizable spaces
are separable iff they are second-countable (in other words, their topology admits a
countable basis), any closed subset of a Polish space is Polish for the induced topol-
ogy. Also note that a compact Hausdorff space is Polish iff it is second-countable,
because Urysohn’s metrization theorem provides a compatible metric which has to
be complete by compactness.
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A subset of a Polish space X is called Gδ if it can be written as a countable
intersection of open subsets of X. One of the most important facts regarding Polish
spaces is that Gδ subsets of Polish spaces are exactly those which are Polish for
the induced topology, see [Kec95, Thm. 3.1] (in particular, closed subsets of Polish
spaces are Gδ, but this actually holds in any metrizable space).

Finally, a map f : X → Y between second-countable topological spaces X and
Y is called Baire class 1 if for every closed subset F of Y , f−1(F ) is a Gδ set, or
equivalently if for every open subset U of Y , f−1(U) is Fσ, namely it can be written
as a countable union of closed subsets of X. Baire class 1 functions can be thought
of being just below continuity in the "ladder" of regularity properties of functions.
Indeed, key examples of Baire class 1 functions are lower semi-continuous and upper
semi-continuous real valued functions.

2.2. The finite Borel hierarchy. We now present an exposition of the first steps
of the Borel hierarchy of sets, aimed towards readers who may not be familiar with
(descriptive) set theory. The reader acquainted with this hierarchy may skip the
following two subsections after perhaps recalling Lemma 2.7, which will be important
in the sequel.

Given a Polish space X, the (finite) Borel hierarchy allows one to classify basic
Borel subsets by the number of times one needs to take countable unions and com-
plements to obtain it from open subsets. This hierarchy is defined by induction on
n ⩾ 1 by:

• Σ0
1(X) consists of all open subsets of X;

• Π0
1(X) consists of all closed subsets of X;

• for all n ⩾ 1, Σ0
n+1(X) is the set of all countable unions of elements of

Π0
n(X);

• for all n ⩾ 1, Π0
n+1(X) is the set of all countable intersections of elements of

Σ0
n(X).

Note that we have already encountered sets in the the basic levels of the hierarchy:
Π0

2(X) consists precisely of the Gδ subsets of X, while Σ0
2(X) consists of all Fσ

subsets of X. Further, this hierarchy also allows us to understand the precise way
in which Baire class 1 functions are a generalisation of continuous functions - for
continuous functions, the inverse image of Π0

1(X) subsets (viz. closed subsets of X)
are also in Π0

1(X), while for Baire class 1 functions, inverse image of Π0
1(X) subsets

of X are in the larger class of Π0
2(X) sets. Indeed, the important fact that every

closed subset is Gδ yields that Π0
1(X) ⊆ Π0

2(X), which in turn yields by induction
that for every n ⩾ 1, we have Σ0

n(X) ⊆ Σ0
n+1(X) and Π0

n(X) ⊆ Π0
n+1(X). Also

observe that A ⊆ X is Σ0
n(X) if and only if its complement is in Π0

n(X). Finally,
we note that subsets belonging to Σ0

n(X) (resp. in Π0
n(X)) are often simply called

Σ0
n (resp. Π0

n) subsets of X.
A crucial observation is that all these classes are stable under continuous reduction,

which is defined as follows: given Polish spaces X and Y and subsets A ⊆ X and
B ⊆ Y , we say that A continuously reduces to B, and denote by A ⩽c B, if there
exists a continuous function f : X → Y such that A = f−1(B). Then, it is easy to
check that if B ∈ Σ0

n(Y ) (resp. B ∈ Π0
n(Y )) and we have A ⊆ X such that A ⩽c B,

then A ∈ Σ0
n(X) (resp. A ∈ Π0

n(X)).
We now define completeness, allowing us to make sense of subsets inside a given

complexity class which are as complicated as possible.
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Let us recall that a Polish space is zero-dimensional when its topology admits
a basis consisting of clopen subsets. The Baire space NN is arguably the most
important example of zero-dimensional Polish space, since it surjects continuously
onto any Polish space (see [Kec95, Thm. 7.9]). In particular, given any subset of
a Polish space Y , there is a subset of NN which continuously reduces to it. This
motivates the following definition.

Definition 2.1. Let Y be a Polish space. Then, for any n ⩾ 1, a subset B ⊆ Y is
called Σ0

n-hard (resp. Π0
n-hard) if whenever X is a zero-dimensional Polish space

and A ∈ Σ0
n(X) (resp. A ∈ Π0

n(X)), we have A ⩽c B.
Finally, B ⊆ Y is Σ0

n-complete if it is both Σ0
n and Σ0

n-hard, and Π0
n-complete if

it is both Π0
n and Π0

n-hard.

Remark 2.2. Since every zero-dimensional Polish space is homeomorphic to a closed
subspace of NN (see [Kec95, Thm 7.8]), one could equivalently always take X = NN

in the above definition.

It follows from [Kec95, Thm. 22.4] that if B ⊆ Y is Σ0
n-complete then it is Σ0

n

but not Π0
n, and dually that if B ⊆ Y is Π0

n-complete then it is Π0
n but not Σ0

n.

Remark 2.3. Using Borel determinacy, Wadge proved that the converse is true: if
B ⊆ Y is Σ0

n but not Π0
n then it is Σ0

n-complete; dually if B ⊆ Y is Π0
n but not Σ0

n

then it is Π0
n-complete, see [Kec95, Thm. 22.10].

It follows from the transitivity of ⩽c that if A is Σ0
n-hard, and A ⩽c B then B

is Σ0
n-hard, and taking complements that if A is Π0

n-hard and A ⩽c B then B is
Π0

n-hard.

Remark 2.4. The finite Borel hierarchy which we present here does not exhaust
all Borel sets. The interested reader unfamiliar with ordinals should consult [Sri98]
for a self-contained account of the full Borel hierarchy.

2.3. Climbing up the Borel hierarchy. We now give a short self-contained ac-
count of two basic examples of benchmark sets in the Borel hierarchy.

Lemma 2.5. Pfin(N) is a Σ0
2-complete subset of {0, 1}N.

Proof. Since Pfin(N) is countable, it is Fσ, i.e. Σ0
2. Since there is a bijection N×N →

N, we will show Pfin(N) is Σ0
2-hard by equivalently showing that the set Pfin(N×N)

of finite subsets of N× N is a Σ0
2-hard subset of {0, 1}N×N.

So let X be zero-dimensional Polish, suppose A ⊆ X is Σ0
2, and write A =

⋃
n∈NAn

where each An is closed. Replacing An by
⋃

i⩽nAi, we assume without loss of
generality that An ⊆ An+1.

For every n ∈ N, since X is zero-dimensional, we can write

X \ An =
⋃
m

Un,m

where each Un,m is a clopen subset of X. Furthermore, by replacing each Un,m by
Un,m \

⋃
j<m Un,j, we assume without loss of generality that for a fixed n ∈ N, the

family (Un,m)m consists of disjoint clopen subsets of X.
Now consider the map f : X → {0, 1}N×N, x 7→ (1Un,m(x))(n,m)∈N×N, where 1Un,m

denotes the characteristic function of Un,m. Since each Un,m is clopen, the map f is
continuous.
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In order to conclude the proof, we have to show that A = f−1(Pfin(N × N)),
i.e. that for all x ∈ X, we have x ∈ A iff there are finitely many (n,m) ∈ N × N
such that x ∈ Un,m. By construction, for every n ∈ N, there is at most one m ∈ N
such that x ∈ Un,m. Now if x ∈ A, let n0 ∈ N such that x ∈ An0 , then for all n ⩾ n0

we have x ∈ An and hence x /∈ Un,m for all m ∈ N. We conclude that x belongs to
finitely many Un,m. Conversely if x ̸∈ A then for every n ∈ N there is m ∈ N such
that x ∈ Un,m, and so there are infinitely many (n,m) ∈ N×N such that x ∈ Un,m.
This shows the desired equivalence, which finishes the proof. □

We now present a standard tool for climbing up the Borel hierarchy.

Proposition 2.6. Let Y be a Polish space, suppose B ⊆ Y is Σ0
n-complete. Then

BN ⊆ Y N is Π0
n+1-complete.

Proof. First note that BN =
⋂

k∈N π
−1
k (B) where πk is the projection on the k-th

coordinate, so that BN is in Π0
n+1(Y

N).
Now suppose A ∈ Π0

n+1(NN). By definition there is a countable family (Ak) of
elements of Σ0

n(NN) such that A =
⋂

k∈NAk. Consider the map

Φ : NN → (NN)N

x 7→ (x, x, ...)
.

Then Φ is continuous and A = Φ−1(
∏

k∈N Ak). We thus only need to find Ψ :
(NN)N → Y N continuous such that

∏
k∈NAk = Ψ−1(BN). But since B is Σ0

n complete
we have for every k ∈ N a continuous map fk : NN → Y such that Ak = f−1

k (B).
The map Ψ := (fk)k∈N : (NN)N → Y N satisfies

∏
k∈N Ak = Ψ−1(BN), so that A =

(Ψ ◦ Φ)−1(BN) as wanted. □

Our final lemma follows directly from the previous proposition along with Lemma
2.5.

Lemma 2.7. The set Pfin(N)N is Π0
3-complete in ({0, 1}N)N. □

In other words, the previous lemma shows that the set of sequences of finite
subsets of N is Π0

3-complete. This will be crucial for us in the sequel.

2.4. Topologies on B(H). Let H be a Hilbert space. We will use the following
three topologies on the algebra B(H) of bounded operators on H, which we describe
in terms of nets:

• xi → x weakly if for every ξ, η ∈ H we have ⟨xiξ, η⟩ → ⟨xξ, η⟩.
• xi → x strongly if for every ξ ∈ H we have ∥xiξ − xξ∥ → 0.
• xi → x ∗-strongly if for every ξ ∈ H we have both ∥xiξ − xξ∥ → 0 and
∥x∗

i ξ − x∗ξ∥ → 0.
Since B(H) is the dual of the Banach space of trace class operators (see for instance
[Ped89, Thm. 3.4.13]), we can also endow it with the associated weak-∗ topology,
which is called the ultraweak topology (or σ-weak topology). The latter refines
the weak topology and coincides with it on the closed unit ball B(H)1 (see [Ped89,
Prop. 4.6.14]). In particular B(H)1 is weakly/ultraweakly compact by the Banach-
Alaoglu theorem and Polish as soon as H is separable.

We also need the following basic separate continuity result for the weak topology
towards proving Maréchal’s theorem.
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Lemma 2.8. Let x ∈ B(H). The maps y 7→ yx and y 7→ xy are continuous for the
weak topology.

Proof. The continuity of y 7→ yx for the weak topology is immediate to check. For
y 7→ xy, one reduces it to the previous case using the adjoint map, which is a
homeomorphism for the weak topology and satisfies (xy)∗ = y∗x∗. □

We arrive at the following important observation, already present in Maréchal’s
paper.

Proposition 2.9. Let H be separable. The multiplication map (x, y) 7→ xy is a
Baire class 1 map (B(H)1, τweak)× (B(H)1, τweak) → (B(H)1, τweak).

Proof. Since B(H)1 is compact Polish for the weak topology, and since the above
lemma precisely says that multiplication is separately continuous on B(H)1 for the
weak topology, the proposition follows from [Kur66, §31.V, Thm. 2]. □

We require one last lemma on B(H) for our proof of the Haagerup-Winsløw se-
lection theorem. This lemma is stated as Lemma 2.4 in [HW98]. It can be seen as
a generalization of the well-known fact that on the unitary group, the weak and the
strong-∗ topology are the same, and the proof is indeed very similar. We provide
the proof for the reader’s convenience.

Lemma 2.10. Let u ∈ B(H) be an isometry, then for every strong neighborhood U
of u, there is a weak neighborhood V of u such that V ∩B(H)1 ⊆ U ∩B(H)1. If u is
moreover unitary, then the same conclusion holds for any strong* neighborhood U
of u.

Proof. It suffices to prove this when U is a subbasic neighborhood of u, so that
we can then take U to be of the form U = {x : ∥(x− u)ξ∥2 < ϵ} for the strong
topology, while for the strong-∗ topology it could also be of the form U = {x :
∥(x∗ − u∗)ξ∥2 < ϵ}, where ξ is a vector of norm 1 and ϵ > 0. Let us start by the
case U = {x : ∥(x− u)ξ∥2 < ϵ} and u is an isometry. Note that for any x ∈ B(H)1,
we have

∥(x− u)ξ∥2 = ∥uξ∥2 + ∥xξ∥2 − 2Re ⟨xξ, uξ⟩
⩽ 2− 2Re ⟨xξ, uξ⟩
= 2Re ⟨(u− x)ξ, uξ⟩ , since u is isometric.

So if we let V = {x ∈ B(H) : |⟨(x− u)ξ, uξ⟩| < ϵ/2}, then the previous calculation
yields V ∩ B(H)1 ⊆ U ∩ B(H)1 as wanted.

For the strong-∗ topology, suppose moreover that u is unitary. Then we need to
deal with the additional case where

U = {x : ∥(x∗ − u∗)ξ∥2 < ϵ}.

However, the above calculation applied to the isometry u∗ yields

∥(x∗ − u∗)ξ∥2 ⩽ 2Re ⟨(u∗ − x∗)ξ, u∗ξ⟩ = 2Re ⟨(u− x)u∗ξ, ξ⟩ .

So if we let this time V = {x ∈ B(H) : |⟨(u− x)u∗ξ, ξ⟩| < ϵ/2}, then V ∩ B(H)1 ⊆
U ∩ B(H)1 as wanted. □
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3. Topologies on the space of closed subsets

Given a topological space X, we denote by F(X) the space of all closed subsets of
X. Several relevant topologies can be put on F(X), see e.g. [Bee93], and our work
requires three of them. We start with the lower topology, which will be refined by
the two other topologies we describe, namely the Wijsman topology and the Vietoris
topology.

3.1. The lower topology. Given a topological space X, the lower topology (also
called lower Vietoris topology or lower semi-finite topology) on F(X) is obtained by
declaring the following sets to be open:

IU := {F ∈ F(X) : F ∩ U ̸= ∅},
where U is an open subset of X. Sets of the form IU where U is open thus form
a subbasis for the lower topology, and we denote the later by τ low. Moreover, if
(Ui)i∈I is a basis of the topology of X, it is straightforward to show that (VUi

)i∈I is
a subbasis for the lower topology on F(X). In particular, if X is second-countable,
then so is the lower topology on F(X).

Also observe that if X and Y are topological spaces, the map

F(X)×F(Y ) → F(X × Y )
(A,B) 7→ A×B

is an embedding of topological spaces for the lower topology, allowing us to view
F(X)×F(Y ) as a topological subspace of F(X × Y ).

The lower topology satisfies the following important continuity property.

Lemma 3.1. Let X and Y be topological spaces, let f : X → Y be continuous.
Then the map f∗ : F(X) → F(Y ) defined by f∗(F ) = f(F ) is continuous, if we
endow F(X) and F(Y ) with their respective lower topologies.

Proof. Let U be an open subset of Y . Then by definition f−1
∗ (IU) is the set of

all F ∈ F(X) such that f(F ) ∩ U ̸= ∅, which is equivalent to f(F ) ∩ U ̸= ∅.
The latter condition is finally equivalent to F ∩ f−1(U) ̸= ∅, which means that
f−1
∗ (IU) = If−1(U). Since f is continuous, this shows that the f∗-preimage of any

subbasic open set of the form IU is open, so f∗ is continuous as wanted. □

Note that the map X → F(X), x 7→ {x} is continuous for the lower topology.
Also, the intersection map (F1, F2) 7→ F1 ∩ F2 is not continuous for the lower topol-
ogy in general, for instance if xn → x with xn ̸= x then {xn}∩{x} = ∅ ̸→ {x} for the
lower topology. However, the intersection map satisfies the following weaker conti-
nuity property which will be useful in establishing the Michael’s Selection Theorem
(Theorem 5.2).

Lemma 3.2. Let W ⊆ X ×X be open, where X is any topological space and define
Wx := {y ∈ X : (x, y) ∈ W}. The map

X ×F(X) → F(X), (x, F ) 7→ Wx ∩ F

is continuous for the lower topology.

Proof. Let (x0, F0) ∈ X × F(X) and suppose that U is an open subset of X such
that Wx0 ∩ F0 ∩ U ̸= ∅. we need to find an open neighborhood O of (x0, F0) such
that we still have Wx ∩ F ∩ U ̸= ∅ for all (x, F ) ∈ O.



MICHAEL’S SELECTION THM. AND APPLICATIONS TO THE MARÉCHAL TOPOLOGY 9

We have that Wx0 ∩ F0 ∩ U is not empty, so we find y0 ∈ U ∩ F0 such that
(x0, y0) ∈ W . Since W is open, we find open neighborhoods V1 of x0 and V2 ⊆ U of
y0 such that V1 × V2 ⊆ W . It follows that for any x ∈ V1, we have V2 ⊆ Wx, so for
any F such that F ∩ V2 ̸= ∅, we have F ∩Wx ∩U ̸= ∅ since V2 is contained in U . It
follows that

O = V1 × {F ∈ F(X) : F ∩ V2 ̸= ∅}

is the desired neighborhood of (x0, F0). □

3.2. The Vietoris topology. Let X be a compact Hausdorff space. Then F(X)
is equal to the space of compact subsets of X, and we endow it with the Vietoris
topology which is defined as the join of the lower topology and the upper Vietoris
topology. The latter is the topology whose basis is given by sets of the form

CU := {F ∈ F(X) : F ⊆ U},

where U is any open subset of X. We denote by τupViet the upper Vietoris topology,
and by τViet the Vietoris topology. Note that the empty set is then isolated for the
upper Vietoris topology, via the open set C∅. Also note that if X ′ ⊆ X is closed,
then the topology induced by the Vietoris topology of F(X) on F(X ′) is equal to
the Vietoris topology of F(X ′).

The following fundamental theorem is well-known, see e.g. [Mic51, 4.9.6] where
the Vietoris topology is called the finite topology.

Theorem 3.3 (Vietoris). Let X be a compact Hausdorff space. Then the Vietoris
topology on F(X) is compact and Hausdorff.

The next lemma will be useful towards proving some natural subspaces of F(X)
are closed, hence compact by the previous theorem.

Lemma 3.4. If X is a compact Hausdorff space then the set

{(F,G) ∈ F(X)×F(X) such that F ⊆ G}

is closed in F(X) × F(X) equipped with the product of the lower topology with the
upper Vietoris topology, namely τ low× τupViet. In particular it is closed for τ low× τViet

and for τViet × τViet.

Proof. We show that the complement is open: take (F0, G0) such that F0 ̸⊆ G0. Fix
some x0 ∈ F0 \ G0, then since X is compact we find U open containing x0 disjoint
from V open containing G0. The set IU × CV is an open neighborhood of (F0, G0)
all whose elements (F,G) satisfy F ̸⊆ G as wanted. □

Specifying to singletons, we have the following fact.

Lemma 3.5. Let (X, τX) be a compact Hausdorff space. Then the set of couples
(x, F ) such that x ∈ F is closed for the product topology τX × τupViet, in particular it
is closed for τX × τViet.

Proof. The map x ∈ X 7→ {x} ∈ F(X) is τX to τ low continuous (actually, it
is a topological embedding), so the result follows immediately from the previous
lemma. □
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Finally, if X is compact Polish, its topology admits a countable basis (Un)n∈N,
and it can easily be checked using compactness that the following sets form a basis
for the upper Vietoris topology:

C⋃
n∈F Un ,where F ranges over finite subsets of N.

Since the lower topology is also secound-countable, the Vietoris topology is second-
countable as well, hence Polish (see also [Kec95, Sec. 4.7] for a more general result
on the space of compact subsets of a Polish space).

3.3. The Wijsman topology. Denote by F∗(X) the space of closed non-empty
subsets of a topological space X. In order to motivate the definition of the Wijsman
topology, we begin by noting the following nice way of understanding the lower
topology, when X is equipped with a compatible metric.

Proposition 3.6. Suppose (X, d) is a metric space. Then the lower topology induced
on the set F∗(X) is the coarsest topology which makes the map F 7→ d(x, F ) upper
semi-continuous for every x ∈ X.

Proof. Recall that a function f : X → R is upper semi-continuous if for any r ∈ R,
the set {x ∈ X : f(x) < y} is open in X. The result now follows from the fact
that a subbasis for the lower topology is given by sets of the form {F ∈ F∗(X) :
B(x, r) ∩ F ̸= ∅}, which can be rewritten as {F ∈ F∗(X) : d(x, F ) < r}. □

For a metric space (X, d), we now endow its space F∗(X) with the Wijsman
topology, which is the coarsest topology such that for all x ∈ X, the map F ∈
F∗(X) 7→ d(x, F ) is continuous. We denote the Wijsman topology by τWijs. By
the previous lemma, the Wijsman topology refines the lower topology, and it could
be defined as the join of the lower topology and the upper Wijsman topology τupWijs,
which is defined as the coarsest topology making the map F 7→ d(x, F ) lower semi-
continuous, for all x ∈ X. We then have the following analogue of Lemma 3.4.

Lemma 3.7. Let (X, d) be a metric space. Then the set of all couples (F,G) ∈
F∗(X) × F∗(X) such that F ⊆ G is closed in the τ low × τupWijs topology, whence it
follows that it is also closed in τ low × τWijs and τWijs × τWijs topologies.

Proof. Suppose F0 ̸⊆ G0, take x0 ∈ F0 \G0, then d(x0, G0) > 0. Let ϵ = d(x0, G0)/3.
By the previous lemma, the set of all F such that d(x0, F ) < ϵ is τ low-open, while
the set of all G such that d(x0, G0) > 2ϵ is τupWijs open by definition. Thus, the
set of (F,G) satisfying d(x0, F ) < ϵ and d(x0, G) > 2ϵ defines a τ low × τupWijs open
neighbourhood of (F0, G0), for which we clearly have F ̸⊆ G for every such (F,G),
which finishes the proof. □

The following important theorem is due to Beer.

Theorem 3.8 ([Bee91, Thm. 4.3]). Let (X, d) be a complete separable metric space.
Then F∗(X) is Polish for the Wijsman topology associated to the metric d.

Remark 3.9. For (X, d) a compact metric space, the Vietoris topology conincides
with the Wijsman topology on F∗(X). Indeed, it is not hard to see that the Wijsman
topology is refined by the Vietoris topology (as for instance shown in the beginning
of the proof of [Bee93, Thm. 2.2.5]), so since the latter is compact and Hausdorff
(Theorem 3.3), they have to coincide.
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4. Duality for grassmanians

4.1. Vietoris topology on closed subsets of the unit ball of the dual. Let
(E, ∥·∥) be a normed vector space, then consider its dual E∗, which is a Banach
space for the norm ∥ω∥ := supx∈(E)1 |ω(x)|, where (E)1 is the closed unit ball of
E. Further, the dual E∗ can be equipped with the weak-∗ topology, defined as the
weakest topology making the map ω ∈ E∗ 7→ ω(x) continuous for every x ∈ E.
The closed unit ball (E∗)1 is then weak-∗ compact as a consequence of the Banach-
Alaoglu theorem. We can thus equip its space of closed (equivalently compact)
subsets F((E∗)1) with the Vietoris topology as defined in Section 3.2.

For every F ∈ F((E∗)1) non-empty and x ∈ E, define

(1) ρF (x) = sup
ω∈F

|ω(x)| = max
ω∈F

|ω(x)|

and by convention let ρ∅(x) = 0. Note that by the Hahn-Banach theorem, if F =
(E∗)1, then ρF = ∥·∥.

Lemma 4.1. Fix x ∈ E. Then the map

F ∈ F((E∗)1) 7→ ρF (x)

is continuous for the Vietoris topology.

Proof. Since the empty set is isolated for the Vietoris topology, we may as well take
F0 ∈ F((E∗)1) non empty and ϵ > 0; we then need to find a neighborhood U of F0

such that for all F ∈ U we have |ρF (x)− ρF0(x)| < ϵ.
Let ω0 ∈ F0 be such that ρF0(x) = |ω0(x)|. Let V be the weak-∗ open neighbor-

hood of ω0 defined by

V = {ω ∈ (E∗)1 : |ω(x)− ω0(x)| < ϵ}.

Then for all ω ∈ V we have |ω(x)| > |ω0(x)| − ϵ, so by definition for all F ∈ IV we
have ρF (x) > ρF0(x)− ϵ.

Towards the other inequality, consider the following larger weak-∗ open neighbor-
hood of ω0:

W = {ω ∈ (E∗)1 : ∃ω′ ∈ F0, |ω′(x)− ω(x)| < ϵ}

=
⋃

ω′∈F0

{ω ∈ (E∗)1 : |ω′(x)− ω(x)| < ϵ}.

Then F0 ⊆ W , and it is straightforward to check that for all F ∈ CW , we have
ρF (x) < ρF0(x) + ϵ.

We conclude that for all F belonging to the open neighborhood U = IV ∩ CW of
F0, we have |ρF (x)− ρF0(x)| < ϵ as wanted. □

Remark 4.2. The proof actually shows that F 7→ ρF (x) is lower semi-continuous
if we endow F(X) with the lower topology, and upper semi-continuous if we endow
F(X) with the upper Vietoris topology.

We will now use compactness so as to upgrade the previous lemma on a smaller
set of closed subsets, namely convex balanced closed subsets. Recall that a subset F
of E∗ is balanced if for every λ ∈ (C)1 and every x ∈ F , we have λx ∈ F . Denote
by Fbal

conv((E
∗)1) the space of balanced closed convex subsets of (E∗)1. We have the

following well-known proposition.
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Proposition 4.3. The space Fbal
conv((E

∗)1) is a compact Hausdorff subspace of F((E∗)1)
for the Vietoris topology.

Proof. By Theorem 3.3 the space F((E∗)1) is compact and Hausdorff, so it suffices
for us to show that Fbal

conv((E
∗)1) is closed in F((E∗)1).

To this end, we first show that closed balanced subsets of (E∗)1 form a closed
subspace of F((E∗)1).

By Lemma 3.5, the set of all F ∈ F((E∗)1) such that 0 ∈ F is closed. Now, for
for every non-zero λ ∈ (C)1 consider the homeomorphism mλ : (E∗)1 → |λ| (E∗)1
defined by mλ(ω) = λω. It follows that Mλ : F((E∗)1) → F(|λ| (E∗)1) ⊆ F((E∗)1)
given by F 7→ λF is a τViet to τViet homeomorphism, which yields that the subspace
consisting of all F ∈ F((E∗)1) such that Mλ(F ) ⊆ F is closed by Lemma 3.4. The
intersection over λ ∈ (C)1 of these closed subspaces with the closed subspace of
closed subsets containing 0 is the subspace of all balanced closed subsets, which is
thus closed as wanted.

We next show that convexity also defines a closed subspace, for which we need
to use the lower topology. Namely, for every t ∈ [0, 1], consider the continuous map
f t : (E∗)1 × (E∗)1 → (E∗)1 which takes (ω1, ω2) to tω1 + (1− t)ω2. By Lemma 3.1,
it induces a continuous map

f t
∗ : F ((E∗)1 × (E∗)1) → F(E∗)1)

for the lower topologies. In particular the restriction of f t
∗ to

F((E∗)1)×F((E∗)1) ⊆ F((E∗)1 × (E∗)1)

is τ low × τ low to τ low continuous. Note that for all A,B ∈ F((E∗)1), we have
f t
∗(A,B) = tA+ (1− t)B.
It follows that the map

Φt : F 7→ (tF + (1− t)F, F ) = (f t
∗(F, F ), F )

is τViet to τ low × τViet continuous. Since tF + (1 − t)F ⊆ F is equivalent to F ∈
Φ−1

t ({(F,G) : F ⊆ G}), and since {(F,G) : F ⊆ G} is τ low × τViet-closed by Lemma
3.4, we conclude that the set of all F ∈ F((E∗)1) such that tF + (1 − t)F ⊆ F is
τViet-closed. Taking the intersection over all t ∈ [0, 1] of the spaces of such F ’s, we
arrive at the desired conclusion that the space of convex closed subsets of (E∗)1 is
closed in F((E∗)1).

Since the space Fbal
conv((E

∗)1) is the intersection of the closed space of balanced
subsets with the closed space of convex subsets, it is also closed as wanted. □

The following proposition is key to understanding the Vietoris topology on Fbal
conv(E

∗).

Proposition 4.4. Let (E, ∥·∥) be a normed vector space, then the map

ρ : Fbal
conv((E

∗)1) → RE

F 7→ ρF

where ρF is given by Equation (1), is a homeomorphism onto its image.

Proof. By Lemma 4.1, the map ρ is continuous. Now, since Fbal
conv((E

∗)1) is compact
and RE is Hausdorff, it suffices for us to show ρ is injective. This is an immediate
consequence of the fact that for all F ∈ Fbal

conv((E
∗)1), we have that

F = {ω ∈ (E∗)1 : ∀x ∈ E, |ω(x)| ⩽ ρF (x)}.
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To see why this holds, note that the inclusion F ⊆ {ω ∈ (E∗)1 : ∀x ∈ (E)1, |ω(x)| ⩽
ρF (x)} follows from the definition of ρF . Conversely, suppose ω0 /∈ F , then the
Hahn-Banach theorem [Rud07, Thm. 3.7] and duality [Rud07, Thm. 3.10] grant us
x ∈ E such that ω0(x) > 1 but |ω(x)| ⩽ 1 for all ω ∈ F . It follows that ρF (x) ⩽ 1,
but then ω0(x) > 1 ⩾ ρF (x) so ω0 /∈ {ω ∈ (E∗)1 : ∀x ∈ E, |ω(x)| ⩽ ρF (x)}, as
wanted. □

4.2. Vietoris topology on grassmanian of dual spaces. Given a normed vector
space (E, ∥·∥), let us denote by Gw∗(E

∗) the set of all weak-∗ closed subspaces of E∗,
which we call the grassmanian of E∗. Note that any subspace of a normed space
is completely determined by its unit ball which is convex and balanced. Thus, we
may view Gw∗(E

∗) as a subspace of the compact Hausdorff space Fbal
conv((E

∗)1) and
we endow it with the induced topology, as Maréchal does at the beginning of her
paper [Mar73].

However, contrary to what she states there, Gw∗(E
∗) is not compact in general,

or equivalently it can fail to be closed in Fbal
conv((E

∗)1), even in the case when E∗ is
a von Neumann algebra. Here is a counterexample.

Counterexample 4.5. Consider the von Neumann algebra ℓ∞(N) = (ℓ1(N))∗,
which is generated by (δn)n⩾1 where δn(m) = 0 if n ̸= m and δn(m) = 1 if n = m.
For every n ⩾ 1, let Vn = C(1

2
δ0 + δn), whose unit ball is

Bn = (C)1 · (
1

2
δ0 + δn).

Observe that the map ξ ∈ (ℓ∞(N))1 7→ (C)1ξ is continuous if we endow (ℓ∞(N))1
with the weak-∗ topology and F((ℓ∞(N))1) with the associated Vietoris topology.
Since δi → 0 for the weak-∗ topology, we have

lim
n→+∞

Bn = (C)1 ·
1

2
δ0,

which is not the unit ball of a weak-∗ closed vector subspace of ℓ∞(N).

We will see later on that Gw∗(E
∗) is however Polish when E is separable (see

Corollary 4.11), which is sufficient to fix Maréchal’s proof.
Proposition 4.4 allows us to put the equivalence between (ii) and (iii) in [HW98,

Thm. 2.8] in the proper context, where for ω ∈ E∗ and x ∈ E we let ⟨ω, x⟩ = ω(x).

Proposition 4.6. Let (E, ∥·∥) be a normed vector space. Let (Vi)i∈I be a net con-
sisting of elements of Gw∗(E

∗), let V ∈ Gw∗(E
∗). Then the following are equivalent:

(i) (Vi)1 → (V )1 in the Vietoris topology;
(ii) for all x ∈ E, we have

∥⟨·, x⟩∥↾Vi
→ ∥⟨·, x⟩∥↾V .

Proof. Recall that in Proposition 4.4 we showed that the map ρ· : F ∈ Fbal
conv((E

∗)1) →
RE defined by ρF (x) = supω∈F |ω(x)| is a homeomorphism onto its image. When
F = (V )1 for a weak-∗ closed subspace V , we have

ρ(V )1(x) = sup
ω∈(V )1

|ω(x)| = sup
ω∈(V )1

|⟨ω, x⟩| = ∥⟨·, x⟩∥↾V ,

which finishes the proof by Proposition 4.4. □
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4.3. Wijsman topology on grassmanian of Banach spaces. Given a normed
vector space (E, ∥·∥), denote by G∥·∥(E) its space of norm-closed subspaces, which is
naturally a subset of F∗(E). Denoting by d∥·∥ the natural metric associated to the
norm (given by d∥·∥(u, v) = ∥u− v∥), we endow G∥·∥(E) with the topology induced
by the Wijsman topology associated to the metric d∥·∥ on F∗(E), as defined in
Section 3.3.

Proposition 4.7. Let (E, ∥·∥) be a normed vector space. Then the set G∥·∥(E) of all
its closed vector subspaces is closed in F∗(E) for the Wijsman topology associated
to the metric d∥·∥.

Proof. We use a similar approach as for the proof of Proposition 4.3: we show that
the three defining properties of linear subspaces (viz. containing zero, stability under
multiplication by a non-zero scalar, stability under addition) define closed subsets
of F∗(E) in the Wijsman topology.

First, a closed subset F ∈ F∗(E) contains zero if and only if d(0, F ) = 0, so by
continuity of F 7→ d(0, F ) the space all F ∈ F∗(E) containing zero is closed.

Next, for every non-zero scalar λ, the multiplication map mλ : x ∈ E 7→ λE scales
the metric d∥·∥ by a factor |λ|, so it induces a homeomorphism

mλ∗ : F∗(E) → F∗(E)
F 7→ λF

for the Wijsman topology. It then follows from Lemma 3.7 that the space of all
F ∈ F∗(E) which are stable under multiplication by a non-zero scalar is closed for
the Wijsman topology.

Finally, since addition is ∥·∥-continuous, it induces a continuous map F∗(E×E) →
F∗(E) for the lower topology by Lemma 3.1, in particular the map

F∗(E)×F∗(E) → F∗(E)
(A,B) 7→ A+B

is τ low × τ low to τ low continuous. Using Lemma 3.7 one last time, we conclude by
continuity that the space of all F ∈ F∗(E) such that F + F ⊆ F is closed for the
Wijsman topology, which finishes the proof. □

Remark 4.8. The addition map (A,B) 7→ A+B is not continuous for the Wijsman
topology, even in dimension two (take a sequence (An) of lines converging non-
trivially to another line B). So in the above proof the lower topology is seemingly
unavoidable.

Remark 4.9. Similar arguments show for instance that the space of closed C∗-
subalgebras of a given C∗-algebra A is closed for the Wijsman topology. So when A
is separable, the Wijsman topology induces a Polish topology on the space of closed
subalgebras of A by Theorem 3.8. It would be interesting to explore this topology
further. In particular, one could try to compute the exact Borel complexity of
various natural sets of subalgebras in this context, or try to understand the existence
of dense orbits for the natural action of the automorphism group/unitary group of
A thereon.

4.4. The duality theorem. It is a well-known consequence of the Hahn-Banach
theorem that in any normed space (E, ∥·∥) the polar map induces a bijection G∥·∥(E) →
Gw∗(E

∗), and here we observe that this map is a homeomorphism. Although this
result is very natural, we have not been able to find it in the literature.
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Theorem 4.10. Let (E, ∥·∥) be a normed vector space. The natural map

Φ : G∥·∥(E) → Gw∗(E
∗)

V 7→ V ⊥ := {ω ∈ E∗ : ∀x ∈ V, ω(x) = 0}

is a homeomorphism if we endow G∥·∥(E) with the Wijsman topology and Gw∗(E
∗)

with the Vietoris topology.

Proof. The Hahn-Banach theorem ensures that Φ is a bijection whose inverse is the
map W 7→ ⊥W := {x ∈ E : ∀ω ∈ W, ω(x) = 0}.

Recall that by Proposition 4.4, the map W ∈ Gw∗(E
∗) 7→ ρW ∈ RE is a home-

omorphism onto its image, where ρW (x) = supω∈(W )1 |ω(x)|. Now observe that for
any x ∈ E and V ∈ G∥·∥(E), we have

d∥·∥(x, V ) = ∥x+ V ∥E/V

= sup
ω∈(E/V )∗1

|ω(x+ V )|

= sup
ω∈(V ⊥)1

|ω(x)| .

= ρV ⊥(x).

By the definition of the Wijsman topology and Proposition 4.4, this finishes the
proof. □

We can now fix the gap in Maréchal’s proof, replacing her erroneous statement
that the grassmanian is compact for the Vietoris topology (see Counterexample 4.5)
by the fact that it is Polish, which suffices to have the rest of her proof go through.

Corollary 4.11. Let (E, ∥·∥) be a separable Banach space. Then the grassmanian
Gw∗(E

∗) of weak-∗ closed subspaces of E∗ is a Polish space for the Vietoris topology.

Proof. By the previous result, Gw∗(E
∗) is homeomorphic to G∥·∥(E) endowed with

the Wijsman topology. But the latter is a Polish space since it is a closed subspace
of F∗(E) by Proposition 4.7 and F∗(E) is Polish for the Wijsman topology by
Theorem 3.8. Being homeomorphic to a Polish space, Gw∗(E

∗) is Polish as wanted.
□

Remark 4.12. This corollary can also be proved directly, by showing that Gw∗(E
∗)

is Gδ in the compact Polish space Fbal
conv((E

∗)1). To be more precise, one shows
that B ∈ Fbal

conv((E
∗)1) is the unit ball of a weak-∗ closed subspace of E∗ iff for all

s ∈ (0, 1) ∩ Q we have
1

s
((E∗)s ∩B) ⊆ B. It can be shown that the intersection

map (F,G) 7→ (F ∩ G) is Baire class 1, so for a fixed s ∈ (0, 1) ∩ Q, the condition
1

s
((E∗)s ∩B) ⊆ B defines a Gδ set, which is not closed in general as can be seen

through a slight modification of Counterexample 4.5.

5. Michael’s selection theorem

5.1. Partitions of unity. We require a definition: given an open cover U of a topo-
logical space X, a partition of unity subordinate to U is a family of functions
(ρi)i∈I where

(1) ρi : X → [0, 1] is continuous;
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(2) for every x0 ∈ X, there is a neighborhood V of x0 such that there are only
finitely many ρi’s whose support intersect V ;

(3) for all x ∈ X,
∑

i∈I ρi(x) = 1;
(4) for every i ∈ I, the set supp ρi is contained in some U ∈ U .

The direct proof of the following lemma is inspired by the paper [Dyd03].

Lemma 5.1. Let X be a Polish space. For every open cover U of X, there is a
partition of unity subordinated to U .

Proof. Since X is Polish, by Lindelöf’s lemma we may as well assume U is countable,
and we thus write it as U = (Un)n∈N. Fix a compatible metric d on X. As a first
step, consider the sequence of functions gn given by gn(x) =

1
2n

min(1, d(x,X \Un)).
Each gn is supported on Un. Moreover, each gn is 1-Lipschitz, so if we define g(x) =
supn gn(x), the function g is 1-Lipschitz as well, in particular it is continuous. Since
(Un) is a cover of X, we have g(x) > 0 for all x ∈ X.

For each n ∈ N, consider the continuous function fn defined by

fn(x) = max

(
0, gn(x)−

g(x)

2

)
and observe that for all x ∈ X there is n ∈ N such that fn(x) > 0. Consider
f(x) =

∑
n∈N fn(x), then f takes only non-zero positive values and f is continuous

by absolute convergence (indeed ∥fn∥∞ ⩽ 2−n by construction).
We finally let ρn(x) =

fn(x)
f(x)

and claim that (ρn) is the desired partition of unity
subordinate to U . Conditions (1), (3) and (4) easily follow from the construction.
Let us check that condition (2) also holds: pick x0 ∈ X, since g is continuous we find
a neighborhood V of x0 such that g(x) > g(x0)

2
for all x ∈ V . Fix N large enough so

that 2−N < g(x0)
4

. Then for all x ∈ V and all n ⩾ N we have gn(x) ⩽ 2−N ⩽ g(x)
2

so
fn(x) = 0. So for all n ⩾ N the support of ρn is disjoint from V , and we conclude
that condition (2) holds as well, thus finishing the proof. □

5.2. Statement and proof of Michael’s selection theorem. We will now state
and prove Michael’s selection theorem [Mic56] in a version which is inspired by
[Sak13, Sec. 3.8]. Given a normed vector space (E, ∥·∥), recall that we denote by
d∥·∥ the associated metric, defined by d∥·∥(v, w) = ∥v − w∥.

Given C ⊆ E closed, we denote by F∗
conv(C) the space of non-empty convex closed

subsets of C, and it is endowed with the lower topology. Given a topological space
X, let us say that a continuous map X → F∗

conv(C) is lower continuous if it is
continuous for the lower topology.

Theorem 5.2 (Michael). Let (E, ∥·∥) be a normed vector space and let X be a
Polish space. Let C be a convex subset of E which is d∥·∥-complete. Suppose F :
X → F∗

conv(C) is a lower continuous map. Then there is a continuous selection for
F , namely a continuous map f : X → C such that for all x ∈ X, f(x) ∈ F (x).

Remark 5.3. Note that in our statement of Michael’s selection theorem we do not
require the metric d∥·∥ to be complete on E, but only when restricted to C. This is
important since in both our applications, the norm will actually not be complete on
E.

The proof will use an approximate version of the result which we state and prove
first.
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Lemma 5.4. Let (E, ∥·∥) be a normed vector space, let C be a convex subset of E
which is d∥·∥-complete. Suppose F : X → F∗

conv(C) is a lower continuous map, and
let ϵ > 0. Then there is a continuous map f : X → C such that for all x ∈ X,
d∥·∥(f(x), F (x)) < ϵ.

Proof. Given v ∈ E and R > 0, let B(v,R) := {w ∈ E : ∥v − w∥ < R} be the open
ball of radius R centered at v. For each v ∈ C, define

Uv := {x ∈ X : F (x) ∩B(v, ϵ) ̸= ∅},
then by lower continuity and the fact that F∗

conv(C) consists of nonempty sets,
(Uv)v∈C is an open cover of X. Using Lemma 5.1, we find a partition of unity
(ρi)i∈I subordinate to U . We then have for all i ∈ I, some vi ∈ C such that for all
x ∈ supp ρi, one has F (x) ∩B(vi, ϵ) ̸= ∅, which is equivalent to d∥·∥(vi, F (x)) < ϵ.

We claim that the map f : x 7→
∑

i∈I ρi(x)vi is as desired. Indeed, note that by
the partition of unity conditions (1) and (2), the map f is continuous, and that by
condition (3) f(x) is a convex combination of finitely many elements of the convex
set (F (x) +B(0, ϵ)) ∩ C, hence it belongs to C and satisfies d(f(x), F (x)) < ϵ. □

Proof of Michael’s selection theorem. We will use the previous lemma and Lemma
3.2 in order to inductively build a sequence of approximate selection which will be
Cauchy for the uniform metric on the space of continuous maps from X to C.

Using the previous lemma, we start with a map f1 : X → C such that for all
x ∈ X, we have d(f1(x), F (x)) < 1. Let us show that we can then inductively build
continuous maps fk : X → C such that for all x ∈ X, we have d(fk(x), F (x)) < 2−k−1

and d(fk+1(x), fk(x)) ⩽ 2−k.
Indeed, assuming fk has already been built, we have d(fk(x), F (x)) < 2−k−1 for

all x ∈ X. Towards applying Lemma 3.2, let

W = {(v1, v2) ∈ C × C : ∥v1 − v2∥ < 2−k−1},
observe that Wv is the open ball B(v, 2−k−1). Since W is open, by Lemma 3.2 the
map x 7→ F (x) ∩Wfk(x) = F (x) ∩B(fk(x), 2−k−1) is continuous. By the previous
lemma, we find a continuous map fk+1 : X → C such that for all x ∈ X, one
has d

(
fk+1(x), F (x) ∩B(fk(x), 2−k−1)

)
< 2−k−2. Then fk+1(x) is as wanted: its

distance to F (x) is less than 2−k−2 and it is 2−k−1 + 2−k−2 < 2−k-close to fk(x).
Now by construction the sequence (fk) is uniformly Cauchy and consists of con-

tinuous functions taking values in the complete metric space (C, d∥·∥), so it has a
continuous limit which is the desired map f . □

The following upgraded version of the selection theorem will be our main tool for
applications.

Corollary 5.5. Let (E, ∥·∥) be a normed vector space and let X be a Polish space.
Let C be a convex subspace of E which is d∥·∥-complete. Suppose additionally that
C is separable.

Let F : X → F∗
conv(C) be a lower continuous map. Then there is a sequence of

continuous map fn : X → C such that for all x ∈ X,

F (x) = {fn(x) : n ∈ N}.

Proof. Let (vn) be dense in C and let f be a continuous selection for F as provided
by the previous theorem. For every n,m ∈ N consider the open subset Un,m := {x ∈
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X : F (x) ∩ B(vn,
1
m
) ̸= ∅}. Since X is Polish, all its open subsets are Fσ and so we

may write each Un,m as

Un,m =
⋃
p∈N

Cn,m,p,

where each Cn,m,p ⊆ Un,m is closed. Now for each n,m, p define Fn,m,p : X →
F∗

conv(C) by

Fn,m,p(x) =


F (x) if x ̸∈ Cn,m,p;

F (x) ∩B(vn, 1/m) if x ∈ Cn,m,p.

We claim that each Fn,m,p is still lower continuous. Indeed, consider a subbasic open
set of the form IO = {F ∈ F∗

conv(C) : F ∩ O ̸= ∅} where O ⊆ C is open. We will
show that F−1

n,m,p(IO) is open.
Let x0 ∈ F−1

n,m,p(IO). We have two cases to consider.
• If x0 /∈ Cn,m,p then since Cn,m,p is closed, the set (X \ Cn,m,p) ∩ F−1(IO) is

an open neighborhood of x0 contained in F−1
n,m,p(IO) since the maps F and

Fn,m,p coincide outside of Cn,m,p and F is lower continuous.
• If x0 ∈ Cn,m,p then by definition we have F (x0) ∩B(vn, 1/m) ∩ O ̸= ∅ so
F (x0) ∩ B(vn, 1/m) ∩ O ̸= ∅. The set F−1(IB(vn,1/m)∩O) is then a neighbor-
hood of x0 all whose elements x satisfy Fn,m,p(x) ∈ IO.

So each Fn,m,p is indeed lower continuous. The conclusion now follows by applying
the previous theorem to each map Fn,m,p. □

Remark 5.6. Our hypothesis on X in Theorem 5.2 is not optimal, and could be
replaced by asking that X is paracompact. Indeed Section 5.1 shows that every
Polish space is paracompact, which is the only property that is used in the proof.
Similarly, Corollary 5.5 holds as long as X is paracompact and perfectly normal, and
we refer the interested reader to [Sak13] for details on these topological properties.

5.3. Two examples of norms. We now build the two norms that will allow us
to use Michael’s selection theorem in the framework of von Neumannn subalgebras:
the first is for the ultraweak topology and will be useful towards proving Maréchal’s
theorem, and the second is for the strong-∗ topology and will allow us to easily
deduce the strong-∗ selection theorem of Haagerup and Winsløw.

Lemma 5.7. Let H be a separable Hilbert space. There is a norm on B(H) whose
restriction to B(H)1 induces a complete metric which is compatible with the ultraweak
topology.

Proof. Recall that on B(H)1, the weak and the ultraweak topology coincide (see
e.g. [Ped89, Prop. 4.6.14]). Moreover B(H)1 is ultraweakly compact by the Banach-
Alaoglu theorem, so it suffices to find a norm ρ which induces the weak topology on
B(H)1 (indeed the associated metric dρ will automatically be complete on B(H)1 by
compactness).

Let us fix a sequence (ξm) dense in the unit ball of H. Let m 7→ (km, lm) be a
surjection N → N× N. Then consider the semi-norm

ρ(x) =
∑
m∈N

1

2m
|⟨xξkm , ξlm⟩| , x ∈ B(H).
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Observe that if (xi) is a uniformly bounded net converging to zero weakly, then
ρ(xi) → 0, in particular ρ is refined by the weak topology on the unit ball.

Let us show that ρ does induce the weak topology on the unit ball, which will
imply in particular that it is a norm. Let x ∈ B(H)1 and assume that we have
a sequence (xn) in the unit ball such that ρ(xn − x) → 0. Let ξ, η ∈ H, without
loss of generality be both non-zero and we thus consider the associated unit vectors
ξ′ := 1

∥ξ∥ξ and η′ := 1
∥η∥η. For any k, l, n ∈ N we have

⟨(xn − x)ξ′, η′⟩ = ⟨(xn − x)ξk, ξl⟩+ ⟨(xn − x)(ξ′ − ξk), ξl⟩+ ⟨(xn − x)ξ′, η′ − ξl⟩ .

Since ρ(xn − x) → 0 the first term tends to zero, while the two other terms can be
made arbitrarily small by the Cauchy-Schwartz inequality, the density of (ξk), and
the fact that ∥xn − x∥ ⩽ 2. So we do have ⟨(xn − x)ξ′, η′⟩ → 0, and multiplying
by ∥ξ∥ ∥η∥ we obtain ⟨(xn − x)ξ, η⟩ → 0 as wanted. This finishes the proof of the
lemma. □

Lemma 5.8. Let H be a separable Hilbert space. There is a norm on B(H) whose
restriction to B(H)1 induces a complete metric which is compatible with the strong-*
topology.

Proof. Let us again fix a sequence (ξm) dense in the unit ball of H. Define the
semi-norm

ρ(x) =
∑
m∈N

1

2m
(∥xξm∥+ ∥x∗ξm∥) , x ∈ B(H).

Again ρ is clearly refined by the strong-* topology on B(H)1. Moreover if (xn) is a
sequence in (B(H))1 and if ρ(xn) → 0, then for all m we have both ∥xnξm∥ → 0 and
∥x∗

nξm∥ → 0. We first have to show that ρ induces the strong-* topology on B(H)1,
which will in particular imply it is a norm.

Let x ∈ B(H)1 and assume that we have a sequence (xn) in the unit ball such
that ρ(xn − x) → 0. As before we take ξ ∈ H nonzero and let ξ′ = 1

∥ξ∥ξ. By the
triangle inequality we have for all n,m ∈ N

∥(xn − x)ξ′∥ ⩽ ∥(xn − x)ξm∥+ ∥(xn − x)(ξ′ − ξm)∥
⩽ ∥(xn − x)ξm∥+ 2 ∥ξ′ − ξm∥ .

The second term can be made arbitrarily small by density, while when m is fixed the
first term tends to zero because ρ(xn−x) → 0; so we conclude that ∥(xn − x)ξ′∥ → 0,
and hence ∥(xn − x)ξ∥ → 0 as wanted. Replacing xn by x∗

n and x by x∗ in the above
argument, we obtain the other desired convergence ∥(x∗

n − x∗)ξ∥ → 0, which finishes
the proof that ρ induces the strong-∗ topology on B(H)1.

We finally show that the metric dρ given by ρ is complete on B(H)1. Let (xn) be
a dρ-Cauchy sequence. Then for all m ∈ N, the sequences (xnξm) and (x∗

nξm) are
Cauchy in H and hence they are norm convergent.

By weak compactness of B(H)1 and weak continuity of the adjoint, there is a
subsequence (nk) and x ∈ B(H)1 such that for all ξ ∈ H, xnk

ξ → xξ and x∗
nk
ξ →

x∗ξ weakly in H as k → ∞. Therefore, the limit in norm of (xnξm) and (x∗
nξm)

respectively must agree with xξm and x∗ξm for all m ∈ N. Since (xn) is bounded a
density argument shows that xn → x and x∗

n → x∗ strongly. □
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6. Applications

6.1. Proof of Maréchal’s theorem. We begin by reproving Maréchal’s selection
result for the weak (equivalently, ultraweak) topology.

Proposition 6.1 ([Mar73, Prop. 1]). Let M be a von Neumann algebra with sepa-
rable predual. Let Gw∗(M) denote its space of ultraweakly closed subspaces, endowed
with the Vietoris topology, and endow the unit ball (M)1 with the weak topology.
There is a sequence of continuous maps xn : Gw∗(M) → (M)1 such that for all
V ∈ Gw∗(M), the sequence (xn(V ))n∈N is dense in (V )1 for the weak topology.

Proof. Recall from Corollary 4.11 that Gw∗(M) is a Polish space for the Vietoris
topology, which refines the lower topology. Since Lemma 5.7 provides us a norm on
M which when restricted to (M)1 yields a complete metric inducing the ultraweak
topology, the conclusion follows directly from the dense version of Michael’s selection
theorem (Corollary 5.5). □

Remark 6.2. Maréchal’s result is actually more precise since she shows that the
sequence of maps (xn) is equicontinuous. This allows her to completely recast con-
tinuity in terms of selections (see [Mar73, Prop. 3]). It would be interesting to see
if a version of Michael’s selection theorem can encompass this statement, possibly
by requiring the source space X to be compact.

We can now finish the proof exactly as Maréchal did in [Mar73, Cor. 2]. Given a
von Neumann algebra M , we denote by S(M) its space of von Neumann subalgebras
(with the same unit as M). Since such subalgebras are ultraweakly closed, we have
S(M) ⊆ Gw∗(M) and we thus endow it with the Vietoris topology.

Theorem 6.3. Let M be a von Neumann algebra with separable predual. The space
S(M) of von Neumann subalgebras of M is Gδ inside the Polish space Gw∗(M). In
particular, it is a Polish space.

Proof. Note that an ultraweakly closed subspace V of M is a von Neumann algebra
iff its closed unit ball (V )1 satisfies the following three additional conditions:

(i) (V )1 is closed under taking adjoints;
(ii) (V )1 contains 1M ;
(iii) (V )1 is closed under multiplication.
Condition (i) defines a closed subset of Gw∗(M) since the adjoint map is a home-
omorphism of (M)1 for the weak topology. Condition (ii) defines a closed set by
Lemma 3.5. Condition (iii) is more subtle since the product map is not weakly
continuous, even on bounded sets. We will actually show that condition (iii) defines
a Gδ set, which will conclude the proof since closed sets are Gδ and any countable
(in particular, finite) intersection of Gδ subsets is itself Gδ.

Consider a sequence (xn) as provided by Proposition 6.1: for every n the map xn :
Gw∗(M) → (M)1 is continuous and for each V ∈ Gw∗(M), the sequence (xn(V ))n∈N
is dense in (V )1 for the weak topology. Now consider the following set:

P(M) := {V ∈ Gw∗(M) : ∀n,m ∈ N, xn(V )xm(V ) ∈ V }

=
⋂

n,m∈N

{V ∈ Gw∗(M) : xn(V )xm(V ) ∈ V }.

Because the multiplication map is Baire class 1 for the weak topology (cf. Proposi-
tion 2.9) and the relation ∈ defines a closed set (Lemma 3.5) and the maps xn are
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continuous, we have that P(M) is a countable intersection of Gδ subsets, hence it
is Gδ. Let us check that the elements of P(M) are exactly those which satisfy (iii)
so as to finish the proof.

Clearly any V satisfying (iii) will belong to P(M). Conversely, if V ∈ P(M), for
any n ∈ N the weak continuity of left multiplication and density of (xm(V ))m in the
unit ball of V yields that xn(V ) · (V )1 ⊆ (V )1. Then the weak continuity of right
multiplication (see Lemma 2.8) and the density of (xn(V ))n in (V )1 yield that for
every x ∈ (V )1, we have (V )1 · x ⊆ (V )1. We conclude that the unit ball of V is
closed under multiplication as wanted. □

6.2. Proof of the Haagerup-Winsløw selection theorem. The following result
is implicit in [HW98], and is the key to our proof of their selection theorem.

Proposition 6.4. Let M be a von Neumann algebra. The lower topologies associated
to the weak topology and to the strong-∗ topology on the unit ball coincide on S(M).

Proof. Of course the lower topology associated the weak topology is refined by the
lower topology associated to the strong-* topology. Conversely, we need to show
that given a von Neumann subalgebra N0 ⊆ M , every lower subbasic strong-∗
neighborhood of N0 is a lower weak neighborhood of N0.

To this end, fix a strong-∗ open set U intersecting (N0)1 non-trivially and con-
sider the lower strong-∗ subbasic neighborhood IU of N0. Since we will need to stay
in the unit ball, the following version of the Kaplansky density theorem will be used.

Claim. There is a strong-∗ to strong-∗ continuous map ϕ : M → (M)1 such that
for all x ∈ (M)1, ϕ(x) = x.

Proof of the claim. The map ϕ constructed in the proof of [HW98, Lem. 2.2] works
as required (to see that it is strong-∗ to strong-∗ continuous, one can for instance
appeal to [Con00, Lem. 44.2]). □claim

Now let x0 ∈ U∩(N0)1, and fix a map ϕ as in the claim. Since N0 is a von Neumann
algebra, x0 = ϕ(x0) can be written as a linear combination of four unitaries

x0 = λ1u1 + λ2u2 + λ3u3 + λ4u4.

By strong-∗ continuity of addition and of ϕ, we find for i ∈ {1, . . . , 4} a strong-∗
open set Ui containing ui such that ϕ(λ1U1 + λ2U2 + λ3U3 + λ4U4) ⊆ U ∩ (M)1.

By Lemma 2.10 we find weakly open subsets Vi of (M)1 containing ui such that
Vi ⊆ Ui ∩ (M)1. Then

⋂4
i=1 IVi

is a lower weak neighborhood of N0 contained in IU

as desired. □

We can finally state and prove the Haagerup-Winsløw selection theorem, thus
upgrading Proposition 6.1 in the context of S(M).

Theorem 6.5 ([HW98, Thm. 3.9]). Let M be a von Neumann algebra with separable
predual. There is a sequence (xn) of strong-∗ continuous maps S(M) → (M)1 such
that for all N ∈ S(M), the set {xn(N) : n ∈ N} is dense in (N)1 for the strong-∗
topology.

Proof. By Theorem 6.3 the space S(M) is Polish for the Vietoris topology associated
to the weak topology on (M)1, which refines the lower topology associated to the
weak topology. Proposition 6.4 implies that the latter coincides with the lower
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topology associated to the strong-∗ topology on (M)1. By the dense version of
Michael’s selection theorem (Corollary 5.5), we now only need to show that we can
endow M with a norm whose restriction to the unit ball of M induces a complete
metric compatible with the strong-∗ topology, which is precisely the content of
Lemma 5.7. □

6.3. The set of finite von Neumann algebras is Π0
3-complete. As an addition

to the numerous applications of the above theorem that one can find in [HW98,
HW00], we find an optimal refinement of a result of Nielsen showing that the set of
finite von Neumann algebras is Borel [Nie73].

Recall that a finite von Neumann algebra M with separable predual is charac-
terised by the existence of a finite trace, namely a faithful normal state τ : M → C
such that τ(ab) = τ(ba) for all a, b ∈ M , on it. More generally, finite von Neumann
algebras are defined by "finiteness" of the identity projection, which in terms of the
comparison theory of projections, means that the identity operator is not (Murray-
von Neumann) equivalent to any proper subprojection in M . We refer the reader
to [Li92, Sec. 6.3] for more details on finite von Neumann algebras, including the
proofs of equivalences between different characterisations of it.

The characterization that will prove useful to us relies on the existence of a com-
patible norm for the strong topology on the unit ball in the same spirit as those from
Section 5.3. We now fix one such norm, although some of the equivalent statements
below would be more naturally stated in terms of uniform structures. Let (ξn) be
dense in (H)1, define for x ∈ B(H)

ρs(x) =
∑
n

1

2n
∥xξn∥ .

A straightforward simplification of the proof of Lemma 5.8 yields that ρs is a norm
inducing a metric ds whose restriction to the unit ball is complete and induces the
strong topology.

Theorem 6.6. Let M be a von Neumann algebra with separable predual endowed
with the aforesaid norm ρs and let ds denote the associated metric. Then the follow-
ing are equivalent:

(1) M is finite;
(2) x 7→ x∗ is continuous for the strong topology on (M)1;
(3) x 7→ x∗ is continuous at 0 for the strong topology on (M)1;
(4) x 7→ x∗ is uniformly continuous for ds on (M)1.

Proof. The equivalence between (1) and (2) follows from results of Sakai [Sak57],
see also [Li92, Thm. 6.3.12]. The fact that (2) implies (3) is clear.

Next, since ρs is a norm and x 7→ x∗ is antilinear, continuity at zero implies
uniform continuity, so (3) implies (4). The latter directly implies (2), which finishes
the proof. □

Theorem 6.7. Let H be a separable Hilbert space. The set of finite von Neumann
subalgebras in S(B(H)) is Π0

3-complete.

Proof. Denote by Sfin(B(H)) the space of finite (unital) von Neumann subalgebras
of B(H). Fix a sequence of Maréchal to strong-∗ continuous maps xn : S(B(H)) →
(B(H))1 as in Theorem 6.5, so that for every M ∈ S(B(H)) (xn(M)) is strong-∗
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dense in (M)1. Then by Theorem 6.6, M ∈ Sfin(B(H)) iff for every ϵ > 0, there is
δ > 0 such that

for all n,m ∈ N, if ds(xn(M), xm(M)) < δ then ds(x
∗
n(M), x∗

m(M)) ⩽ ϵ.

For every n,m ∈ N and δ, ϵ > 0, let Fn,m,δ,ϵ denote the set of all M ∈ S(B(H)) such
that if ds(xn(M), xm(M)) < δ, then ds(x

∗
n(M), x∗

m(M)) ⩽ ϵ. Equivalently, Fn,m,δ,ϵ is
the set of all M ∈ S(B(H)) such that ds(xn(M), xm(M)) ⩾ δ or ds(x∗

n(M), x∗
m(M)) ⩽

ϵ, so by continuity it is closed. So
⋂

n,m Fn,m,δ,ϵ is closed as well. By the above dis-
cussion

Sfin(B(H)) =
⋂

ϵ∈Q>0

⋃
δ∈Q>0

⋂
n,m∈N

Fn,m,δ,ϵ,

so Sfin(B(H)) is Π0
3 as wanted.

To see that it is Π0
3-complete, let us recall that the set Pfin(N)N of sequences of

finite subsets of N is a Π0
3-complete subset of ({0, 1}N)N by Lemma 2.7, so we will be

done once we continuously reduce the latter set to Sfin(B(H)). To this end, we work
on H = ℓ2(N × N), which we freely identify with ℓ2(N) ⊗ ℓ2(N). Given a sequence
S = (Sn)n ∈ ({0, 1}N)N of subsets of N, we map it to

f(S) :=

(⊕
n

B(ℓ2({n} × Sn))

)
⊕ C(1− πS) ⊆ B(H),

where πS :=
∑

n enn ⊗ pSn , and ekl = ⟨el, ·⟩ ek are the matrix units associated to
the canonical orthonormal basis (en)n∈N of ℓ2(N) and, for a subset A ⊆ N, pA :=∑

k∈A ekk ∈ B(ℓ2(N)) is the orthogonal projection onto ℓ2(A). Clearly, f((Sn)n) is
finite (as a von Neumann algebra) iff for all n the subset Sn is finite, thus it suffices
to show that f is continuous.

By Proposition 4.6, the continuity of f will be established once we show that for
each linear functional ω ∈ B(H)∗, we have that the map S 7→

∥∥ω↾f(S)

∥∥ is continuous.
Let us thus consider the set

Z := {ω ∈ B(H)∗ : S 7→ ∥ω↾f(S)∥ is continuous}.

Since for any linear subspace M of B(H), the map ω 7→ ω↾M is 1-Lipschitz, the set
Z is norm closed, and we thus only have to show that Z is dense.

For any vectors ξ, η ∈ H and x ∈ B(H), let ωξ,η(x) = ⟨ξ, xη⟩. The set of linear
functionals of the form

ω =
n∑

i,j=1

ωei⊗ξi,ej⊗ηj ,

for ξi, ηj ∈ ℓ2(N), is norm dense in B(H)∗ (see e.g. [Li92, Thm. 1.1.9 and Prop. 1.1.7]),
and we will show that it is contained in Z, thus finishing the proof.

Fix a linear functional ω =
∑n

i,j=1 ωei⊗ξi,ej⊗ηj as above, and let us compute ∥ω↾f(S)∥
where S = (Sn)n ∈ ({0, 1}N)N. Note that the unit ball of f(S) is exactly the set of
x ∈ B(H) of the form

x =
∑
n∈N

enn ⊗ ιSnxnpSn + λ(1− πS),
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where xn ∈ B(ℓ2(Sn)) and λ ∈ C are such that ∥xn∥ ⩽ 1 and |λ| ⩽ 1, and ιSn

denotes the natural inclusion of ℓ2(Sn) in ℓ2(N). For such x one has

ω(x) =
n∑

i=1

ωpSi
ξi,pSi

ηi(xi) + λω(1− πS).

In particular, ∥∥ω↾f(S)

∥∥ ⩽
n∑

i=1

∥pSi
ξi∥ ∥pSi

ηi∥+ |ω(1− πS)|.

By considering the element of the unit ball of f(S) defined by

x :=
n∑

i=1

eii ⊗
⟨pSi

ηi, ·⟩ pSi
ξi

∥pSi
ξi∥ ∥pSi

ηi∥
+

|ω(1− πS)|
ω(1− πS)

(1− πS)

where each term with a vanishing denominator is replaced by 0, we find:∥∥ω↾f(S)

∥∥ =
n∑

i=1

∥pSi
ξi∥ ∥pSi

ηi∥+ |ω(1− πS)|.

Observe that for all n ∈ N, the map S = (Sn)n 7→ pSn is continuous for the strong
topology since for every basic vector ej we have pSn(ej) = 1Sn(j). Similarly, we have
that S 7→ πS is continuous for the strong topology. We conclude that when ω is of
the form

ω =
n∑

i,j=1

ωei⊗ξi,ej⊗ηj ,

the map S 7→
∥∥ω↾f(S)

∥∥ is continuous. As explained before, by density this finishes
the proof. □
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