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Abstract

We show that connected separable locally compact groups are infinitesimally
finitely generated, meaning that there is an integer n such that every neighborhood
of the identity contains n elements generating a dense subgroup. We generalize a
theorem of Schreier and Ulam by showing that any separable connected compact
group is infinitesimally 2-generated.

Inspired by a result of Kechris, we introduce the notion of a quasi non-archimedean
group. We observe that full groups are quasi non-archimedean, and that every con-
tinuous homomorphism from an infinitesimally finitely generated group into a quasi
non-archimedean group is trivial. We prove that a locally compact group is quasi
non-archimedean if and only if it is totally disconnected, and provide various exam-
ples which show that the picture is much richer for Polish groups. In particular, we
get an example of a Polish group which is infinitesimally 1-generated but totally dis-
connected, strengthening Stevens’ negative answer to Problem 160 from the Scottish
book.

1 Introduction
One of the simplest invariants one can come up with for a topological group G is its
topological rank t(G), that is, the minimum number of elements needed to generate a
dense subgroup of G. For this invariant to have a chance to be finite, one needs to assume
that G is separable since every finitely generated group is countable.

The oldest result in this topic is probably due to Kronecker in 1884 [Kro31], and says
that an n-tuple (a1, . . . , an) of real numbers projects down to a topological generator of
Tn = Rn/Zn if and only if (1, a1, . . . , an) is Q-linearly independent. Since such n-tuples
always exist, the topological rank of the compact connected abelian group Tn is equal to
one.

Using this result, it is then an amusing exercise to show that t(Rn) = n+1. This means
that as a topological group, Rn remembers its vector space dimension. In particular, we
see that the topological rank sometimes contains useful information (another somehow
similar instance of this phenomenon was recently discovered by the second-named author
for full groups, see [LM14]).

In order to deal with general connected Lie groups, it is useful to introduce the fol-
lowing definition.
∗Research supported by the ISF, Moked grant 2095/15.
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Definition 1.1. The infinitesimal rank of a topological group G is the minimum n ∈
N∪{+∞} such that every neighborhood of the identity in G contains n elements g1, . . . , gn
which generate a dense subgroup of G. We denote it by tI(G).

One can easily show that tI(Rn) = t(Rn) = n + 1. This is relevant for the study of
the infinitesimal rank of real Lie groups because if we know that the Lie algebra of a
connected Lie group G is generated (as a Lie algebra) by n elements, then using the fact
fact that tI(R) = 2 we can deduce that tI(G) 6 2n (see the well-known Lemma 4.2).

For various classes of connected Lie groups one can say more. In particular this is the
situation for compact connected Lie groups, in which case a uniform result is useful in view
of the important role of compact groups in the structure theory of locally compact groups.
Auerbach showed that for every compact connected Lie group G, one has tI(G) 6 2
[Aue34]. Moreover, he could show that the set of pairs of topological generators of G has
full measure, which then led Schreier and Ulam to the following general result, for which
we will include a short proof.

Theorem 1.2 (Schreier-Ulam, [SU35]). Let G be a connected compact metrisable group.
Then almost every pair of elements of G generates a dense subgroup of G. In particular,
tI(G) = t(G) = 2 for any non-abelian such G.

Note that there is a vast area between metrizable compact groups and separable ones;
for instance (T1)

R is compact separable, but not metrizable. Conversely, being separable
is a minimal assumption for a group to have finite topological rank. Going back to
the n-torus, Kronecker’s result admits a far-reaching generalization due to Halmos and
Samelson, which settles the abelian case.

Theorem 1.3 (Halmos-Samelson, [HS42, Corollary]). The topological rank of every con-
nected separable compact abelian group is equal to one.

Our first result is a generalization of Schreier and Ulam’s Theorem to the separable
case. One of the difficulties is that we cannot use their Haar measure argument anymore.

Theorem 1.4 (see Theorem 3.1). Let G be a separable compact connected group. If G is
non-abelian, then tI(G) = 2, and if G is abelian, then tI(G) = 1.

The fact that the topological rank t(G) = 2 was proved by Hoffmann and Morris
[HM90, Theorem. 4.13]. Note that it follows that tI(G) = t(G) for separable compact
connected group.

It is natural to ask if the following stronger statement is true:

Question 1.5. Let G be a separable compact connected group. Is the set of pairs in G
which topologically generate G necessarily of full measure in G×G?

Say that a topological group is infinitesimally finitely generated if it has finite
infinitesimal rank. Using the previous result, and the solution to Hilbert’s fifth problem,
we establish the following result, which was noted by Schreier and Ulam in the abelian
case (see the last paragraph of [SU35]).

Theorem 1.6 (see Theorem. 4.1). Let G be a separable locally compact group. Then G
is infinitesimally finitely generated if and only if G is connected.
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Let us now leave the realm of locally compact groups for a moment and discuss the class
of Polish groups, i.e. separable topological groups whose topology admits a compatible
complete metric. These groups abound in analysis, for instance the unitary group of a
separable Hilbert space or the group of measure-preserving transformations of a standard
probability space are Polish groups. Moreover, they form a robust class of groups, e.g.
every countable product of Polish groups is Polish (see [Gao09] for other properties of this
flavour). Recall that a locally compact group is Polish if and only if it is second-countable.

It is not hard to show that Theorem 1.6 fails for Polish groups: for instance RN is
connected but not topologically finitely generated, in particular it is not infinitesimally
finitely generated. The question of the converse is more interesting, even for the following
weaker property.

Definition 1.7. A topological group G is infinitesimally generated if every neigh-
bourhood of the identity generates G.

Clearly every connected group is infinitesimally generated, and every infinitesimally
finitely generated group is infinitesimally generated. Moreover it follows from van Dantzig’s
theorem that every infinitesimally generated locally compact group is connected.

Question 1.8 (Mazur’s Problem 160 [Mau81]). Must an infinitesimally generated Polish
group be connected?

In [Ste86], Stevens exhibited the first examples of infinitesimally generated Polish
group which are totally disconnected. We show that her examples actually have infinites-
imal rank 2 and then provide the following stronger negative answer to Question 1.8.

Theorem 1.9 (see Theorem. 5.15). There exists a Polish group of infinitesimal rank 1
which is totally disconnected.

Let us now introduce the quasi non-archimedean property which is a strong negation
of being infinitesimally finitely generated.

Definition 1.10. A topological group is quasi non-archimedean if for every neighbor-
hood of the identity U in G and every n ∈ N, there exists a neighborhood of the identity
V such that for every g1, . . . , gn ∈ V , the group generated by g1, . . . , gn is contained in U .

Remark. If we switch the quantifiers and ask for a V which works for every n ∈ N, it is
not hard to see that the definition then becomes that of a non-archimedean topological
group (i.e. admitting a basis of neighborhoods of the identity made of open subgroups).

Our inspiration for the above definition comes from the following result of Kechris:
every continuous homomorphism from an infinitesimally finitely generated group into a
full group is trivial (see the paragraph just before Section (E) of Chapter 4 in [Kec10]).
We upgrade this by showing that every full group is quasi non-archimedean, and that any
continuous homomorphism from an infinitesimally finitely generated group into a quasi
non-archimedean group is trivial (see Proposition 5.5). For locally compact groups, we
obtain the following characterisation.

Theorem 1.11 (see Theorem. 5.8). Let G be a separable locally compact group. Then G
is quasi non-archimedean if and only if G is totally disconnected.
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Note that full groups are connected and at the same time quasi non-archimedean Polish
groups. Moreover, we show that every quasi non-archimedean Polish groups embeds into
a connected quasi non-archimedean Polish group (see Proposition 5.4.).

We also provide examples of totally disconnected Polish groups which are quasi non-
archimedean, but not non-archimedean (see Corollary. 5.12). On the other hand Theorem
1.9 ensures us that there are totally disconnected Polish groups which are not quasi non-
archimedean.

The paper is organised as follows. In Section 2, we prove some basic results on topo-
logical generators. In Section 3, we show that separable connected compact groups are
infinitesimally 2-generated. Section 4 is devoted to the proof that every connected sepa-
rable locally compact group is infinitesimally finitely generated. In Section 5 we introduce
quasi non-archimedean groups and study their basic properties. We also give numerous
examples, and show that a separable locally compact group is totally disconnected if and
only if it is quasi non-archimedean. Finally, a Polish group into which no non-discrete
locally compact group can embed is built in Section 6, where we also ask three questions
raised by this work.

Acknowledgements. We warmly thank Pierre-Emmanuel Caprace for coming up with
the terminology “infinitesimally generated”, as well as for useful conversations around this
topic. We also thank Yves de Cornulier for his helpful remarks on a first version of the
paper and the referee for his or her comments.

2 Basic results about topological generators
We collect some results which will serve us in the preceding sections.

Proposition 2.1. Let G be a connected locally compact group. Suppose that K is a
profinite normal subgroup of G such that G/K is infinitesimally finitely generated. Then
tI(G) = tI(G/K). Moreover, if ḡ1, . . . , ḡk topologically generate the group G/K, and
g1, . . . , gk are arbitrary respective lifts in G, then g1, . . . , gk topologically generate G.

The proof of Proposition 2.1 will rely on the following two lemmas:

Lemma 2.2. Let H be a connected locally compact group and f : H � L a finite covering
map. Let {l1, . . . lk} be a topological generating set for L and pick hi ∈ f−1(li), i = 1, . . . , k
arbitrarily. Then h1, . . . , hk topologically generate H.

Proof. Set F = 〈h1, . . . , hk〉. Note that f , being a finite cover, is a closed map, and hence
f(F ) is closed in L. Since l1, . . . , lk ∈ f(F ) we have f(F ) = L. Thus Ker f · F = H.
Hence by the Baire category theorem F has a non-empty interior. Since H is connected,
this implies that F = H.

Lemma 2.3. Let G be a (connected) locally compact group admitting a pro-finite normal
subgroup KCG such that L = G/K is a Lie group. Then G is an inverse limit G = lim←−Lα
of finite (central) extensions Lα of L.

Although the Lemma holds without the assumption that G is connected, since it
significantly simplifies the proof while being sufficient for our needs, we will prove it only
under the connectedness assumption.
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Proof. Given k ∈ K, the image of the orbit map G→ K, g 7→ gkg−1 is at the same time
connected, since G is connected and the map is continuous, and totally disconnected as
the image lies in K. It follows that it is constant and k is central. Since k is arbitrary we
deduce that K is central in G. In particular every subgroup of K is normal in G.

Let Kα be a net of open subgroups in K with trivial intersection. Then K = lim←−K/Kα

and G = lim←−G/Kα. Set Lα = G/Kα and note that as Kα is open in K, it is of finite
index there. Thus the map Lα → L is a finite covering.

Proof of Proposition 2.1. Let G and K be as in Proposition 2.1. By Lemma 2.3, G =
lim←−Lα is an inverse limit of finite covers Lα of L = G/K. Let ḡ1, . . . , ḡk be topological
generators of L, let g1, . . . , gk be arbitrary lifts in G and denote by gαi the projection of gi
in Lα, for every i, α. By Lemma 2.2, 〈gαi : i = 1, . . . , k〉 is dense in Lα. That is, the group
〈gi : i = 1, . . . , k〉 projects densely to all Lα. This implies that it is dense in G.

3 Connected compact separable groups are infinitesi-
mally 2-generated

Our aim in this section is to prove the following result. Recall that t(G) is the minimal
number of topological generators of G, while tI(G) is the minimal n ∈ N such that every
neighborhood of the identity contains n elements which topologically generate G.

Theorem 3.1. Let G be a separable compact connected group. Then tI(G) = t(G) = 2 if
G is nonabelian and tI(G) = t(G) = 1 if G is abelian.

3.1 The metrizable case

The case where G is metrizable was proved by Schreier and Ulam [SU35]. Recall that a
compact group is metrizable if and only if it is first countable. In that case one can show
that almost every pair of elements in G (or a single element if G is abelian) topologically
generates G. Let us give a short argument for Theorem 1.2 in that case. First recall
that by the Peter–Weyl theorem, G is an inverse limit of compact Lie groups and, being
first countable, the limit is over a countable net. Since a countable intersection of full
measured sets is of full measure, it is enough to prove the analog statement for compact
connected Lie groups.

Note also that, in complete generality, a subgroup H ≤ G is dense if and only if

• H ∩G′ is dense in G′, where G′ is the commutator subgroup in G, and

• HG′ is dense in G.

A connected compact Lie group G is reductive, hence an almost direct product of its
commutator G′ with its centre Z. Moreover G′ is connected and a finite cover of G/Z
which is a semisimple group of adjoint type. In view of Lemma 2.2, we deduce:

Lemma 3.2. Let G be a connected compact Lie group and H ≤ G a subgroup. Then H
is dense in G if and only if both HG′ and HZ(G) are dense in G.

Therefore, for a pair (x, y) ∈ G2 to generate a dense subgroup, it is sufficient if

• the projections of x, y to G/Z generate a dense subgroup in G/Z, and
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• the projection of x to G/G′ generates a dense subgroup in G/G′.

It is easy to check that both conditions are satisfied with Haar probability 1 (cf. [Gel08,
Lem. 1.4 and Lem. 1.10]).

3.2 Proof of Theorem 3.1 in the general case

Let us first deal with abelian groups. By the Halmos–Samelson theorem, whenever G is
connected compact separable abelian, one has t(G) = 1. From their result, we deduce the
following consequence.

Lemma 3.3. Let G be a compact connected separable abelian group. Then tI(G) = 1.

Proof. By the Halmos–Samelson theorem, we may and do pick g ∈ G such that 〈g〉 is
dense in G. Let U be a neighborhood of the identity in G, and fix n ∈ Z \ {0} such
that gn ∈ U . Then since 〈gn〉 has finite index in 〈g〉, its closure 〈gn〉 has finite index in
〈g〉 = G. Since G is connected, we must have 〈gn〉 = G.

Now suppose that G is any connected compact group. By the Peter–Weil theorem
G = lim←−Gα is an inverse limit of compact connected Lie groups Gα.

Observe that a surjective map f : G1 � G2 between groups always satisfies

f(G′1) = G′2 and f(Z(G1)) ⊂ Z(G2),

while for reductive Lie groups we also have f(Z(G1)) = Z(G2). Since every connected
compact Lie group is reductive, hence the product of its centre and its commutator, we
deduce that the same hold for general compact connected groups, i.e.

Z(G) = lim←−Z(Gα), G′ = lim←−G
′
α and G = Z(G)G′.

Moreover, since the G′α are semisimple, and in particular perfect, G′ is also perfect,
i.e. G′ = G′′. It follows that if Γ ≤ G′ is dense, then Γ′ is dense in G′. Hence we have:

Claim. Suppose that a, b ∈ G′ topologically generate G′, and h ∈ Z(G) is an element
whose image mod G′ topologically generates G/G′. Then ah and b topologically generate
G.

Suppose from now on that G is separable. Then every quotient of G is also separable.
Now G/G′ is connected and abelian, so we have tI(G/G′) = 1 by Lemma 3.3.

Since Z(G) surjects onto G/G′, every identity neighbourhood in G contains a central
element h whose image in G/G′ generate a dense subgroup. Thus we are left to show
that tI(G′) = 2. The centre of G′ is totally disconnected since it can be written as
Z(G′) = lim←−Z(G′α), and every G′α has finite center. In view of Proposition 2.1 we may
thus suppose that G′ is center-free. In order to simplify notations, let us suppose below
that G itself is center-free. Note that:

Lemma 3.4. A center-free connected compact group is a direct product of simple Lie
groups.

Thus, G is of the form G =
∏

α∈I Sα with Sα being connected adjoint simple Lie group.

Lemma 3.5. The group G =
∏

α∈I Sα is separable (if and) only if Card(I) ≤ 2ℵ0.
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Let us explain the ‘only if’ side. The other direction will follow once we show that
Card(I) ≤ 2ℵ0 implies that G has a two generated dense subgroup. Suppose by way of
contradiction that Card(I) > 2ℵ0 . Since there are only countably many isomorphism types
of (compact adjoint) simple Lie groups, we deduce that there is some compact simple Lie
group S and a cardinality κ > 2ℵ0 such that G admits a factor isomorphic to Sκ. However
by the cardinals version of the pigeon hole principal, if D ⊂ Sκ is a countable subset,
there must be two factors S1, S2 of Sκ such that the projection of D to S1×S2 lies in the
diagonal. In particular, D cannot be dense, confirming the desired contradiction.

Thus, we may suppose below that Card(I) ≤ 2ℵ0 .

Definition 3.6. Let S1, S2 be two groups, F a set and fi : F → Si, i = 1, 2 two maps.
We shall say that the maps f1 and f2 are isomorphically related if there is an isomorphism
φ : S1 → S2 such that the following diagram is commutative

F
f1−→ S1

↘f2 ↓φ
S2

Lemma 3.7. Let
∏k

i=1 Si (k ≥ 2) be a product of simple groups and let R <
∏k

i=1 Si be a
proper subgroup that projects onto every Si. Then there are two factors Si, Sj, i 6= j such
that the restrictions to R of the quotient maps R → Si and R → Sj are isomorphically
related.

Proof. For a subset J ⊂ {1, . . . , k} let us denote SJ =
∏

i∈J Si and RJ = ProjSJ
(R). Let

J ⊂ {1, . . . , k} be a minimal subset such that RJ is a proper subgroup of SJ . By our
assumption J exists and satisfies |J | > 1. We claim that |J | = 2. To see this, we may
reorder the indices so that J = {1, . . . , j} and suppose by way of contradiction that j ≥ 3.
This, together with the minimality of J , implies that for every g ∈ S1 and every 1 < i ≤ j
there is an element in RJ whose first coordinate is g and whose i’th coordinate is 1.
However, multiplying commutators of elements as above, forcing that at each coordinate
1 < i ≤ j at least one of the elements we use is trivial, and using the fact that S1 is
perfect, we deduce that S1 ≤ RJ . In the same way we get that Si ≤ RJ for all i ∈ J
contradicting the assumption that RJ is proper in SJ . Thus J = {1, 2}. Moreover, as Si
is simple and normal, and RJ projects onto Si, while RJ is proper in SJ , it follows that
RJ ∩ Si is trivial, for i = 1, 2. Therefore, the restriction of the projection from RJ to Si
is an isomorphism, for i = 1, 2, hence the maps R → S1 and R → S2 are isomorphically
related.

Assembling together isomorphic factors of G, we may decompose G as a direct product
G =

∏
n∈NGn where different n’s correspond to non-isomorphic simple Lie factors Sn, and

each Gn is of the form Gn = SInn with |In| ≤ 2ℵ0 . For x ∈ G we shall denote by xαn, α ∈ In
its corresponding coordinates.

Two elements x, y ∈ G generate a dense subgroup if and only if for any finite set of
indices F = {(ni, αi)} the projections of x and y generate a dense subgroup in

∏
F S

αi
ni
.

In view of Lemma 3.7 we have:

Corollary 3.8. Two elements x, y ∈ G generate a dense subgroup in G if and only if

• 〈xαn, yαn〉 is dense in Sαn for every n ∈ N and every α ∈ In, and
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• For every n,m ∈ N and α ∈ In, β ∈ Im the (projection) maps {x, y} → Sαn , {x, y} →
Sβm are not isomorphically related.

Thus, in order to prove the theorem, we should explain how to pick (xαn, y
α
n) arbitrarily

close to the identity in Sαn , for every n ∈ N, α ∈ In, which generate a dense subgroup of
Sn, such that for every pair (n, α) 6= (m,β) there is no isomorphism Sn → Sm taking
(xαn, y

α
n) to (xβm, y

β
m). Since for n 6= m there is no isomorphism between Sn and Sm we

should only consider the case n = m.
Let S = Sn. Recall that there is an identity neighbourhood (a Zassenhaus neighbour-

hood) Ω ⊂ S on which the logarithm is well defined, and for x, y ∈ Ω the group 〈x, y〉 is
dense in S if log(x) and log(y) generate the Lie algebra Lie(S), (see [Kur49]). Thus we
may pick some open set U1×U2 ⊂ Ω2 such that for all (x, y) ∈ U1×U2 the group 〈x, y〉 is
dense in S (cf. [GŻuk02]). Furthermore, we may pick U1, U2 arbitrarily close to the iden-
tity. Since Out(S) is finite and S is compact, we may also suppose, by taking U1 and U2

sufficiently small, that for (x, y) ∈ U1×U2, if f ∈ Aut(S) satisfies (f(x), f(y)) ∈ U1×U2,
then f is inner. Finally, since the orbit of each (x, y) ∈ U1 × U2 under the action of S
on S × S by conjugation, is dim(S) dimensional, while dim(U1 × U2) = 2 dim(S), we can
pick a section S transversal to the orbits foliation, inside U1 × U2. Clearly the cardinal-
ity of that section is 2ℵ0 , hence we may imbed In inside this section. This imbedding
yields a choice of (xα, yα) ∈ S ⊂ U1 × U2 for every α ∈ In, and we have that each pair
(xα, yα) generates a dense subgroup in S, and no two pairs are isomorphically related.
This completes the proof of Theorem 3.1.

4 Local generators and locally compact connected groups
Recall that a topological group G is infinitesimally finitely generated if tI(G) < +∞,
that is, if there exists n ∈ N such that every neighborhood of the identity contains n
topological generators for G.

Similarly, we say that G is topologically finitely generated if t(G) < ∞, that is,
if G admits a dense finitely generated subgroup.

Last but not least, a topological group is infinitesimally generated if it is generated
by every neighborhood of the identity.

Note that if a group is infinitesimally finitely generated, then it is also topologically
finitely generated and infinitesimally generated. Our main goal in this section is to prove
the following result.

Theorem 4.1. Let G be a separable connected locally compact group. Then G is infinites-
imally finitely generated.

As already noted, the separability condition is necessary for a group to be topologically
finitely generated. The connectedness assumption is also necessary (for local generation)
since otherwise G/G◦, the group of connected components, is non-trivial and by the van
Dantzig’s theorem admits a base of identity neighbourhood consisting of open compact
subgroups. In particular, if O ≤ G/G◦ is a proper open subgroup, its pre-image in G
cannot contain a topological generating set.

Let us start by dealing with the nicest connected locally compact groups: Lie groups.
For these, one can use the Lie algebra to produce topological generators. The following
lemma is well known, but we include a proof for the reader’s convenience.
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Lemma 4.2 (Folklore). Let G be a connected Lie group, and let g be its Lie algebra.
Suppose that g is generated as a Lie algebra by X1, . . . , Xn. Then every neighborhood of
the identity in G contains 2n elements g1, . . . , g2n which generate a dense subgroup in G.
In particular, G is infinitesimally finitely generated.

Proof. Let V be a neighborhood of the identity in G. Let U be a small enough neigh-
borhood of 0 in g such that exp : U → G is a homeomorphism onto its image, and
exp(U) ⊆ V . Fix 2n elements Y1, . . . , Y2n of U such that for every i ∈ {1, . . . , n},
{Y2i, Y2i+1} generates a dense subgroup of RXi.

For all i ∈ {1, . . . , 2n}, let gi = exp(Yi), we will show that these elements topologically
generate G. Let H be the closed subgroup generated by the set {gi}2n

i=1. Note that for
all i ∈ {1, . . . , n}, the group H contains exp(RXi) since the restriction of the exponential
map to RXi is a continuous group homomorphism and RXi is topologically generated by
Y2i and Y2i+1 which are mapped to g2i ∈ H and g2i+1 ∈ H.

Furthermore, H is a Lie group by Cartan’s theorem, and since H contains every
exp(RXi) the Lie algebra h of H contains every Xi, so h = g. Because G is connected,
we get that G = H.

We deduce from the above lemma that for any connected Lie group, tI(G) 6 2 dim(G).
Better bounds on tI(G) can be deduced from the analysis in [BG03, BGSS06, Gel08].

Let now G be a general connected locally compact group. Recall the celebrated
Gleason–Yamabe theorem (cf. [Kap71, Page 137]):

Theorem 4.3. (Gleason–Yamabe) Let G be a connected locally compact group. Then
there is a compact normal subgroup K CG such that G/K is a Lie group.

Since G is connected, G/K is a connected Lie group and hence tI(G/K) is finite.
However, K may not be connected.

Example 4.4. (1) (The solenoid) For every n, let Tn be a copy of the circle group
{z ∈ C : |z| = 1}, and whenever m divides n let fn,m : Tn → Tm be the n/m sheeted cover
fn,m(z) = zn/m. Let T = lim←−Tn be the inverse limit group. Then T is connected, abelian
and locally compact, but admits no connected co-Lie subgroups.

(2) Similarly, as SL2(R) is homotopic to a circle, we can define, for every n ∈ N, Gn as
the n sheeted cover of SL2(R). Then whenever m divides n there is a canonical covering
morphisms ψn,m : Gn → Gm, and we may let G be the inverse limit G = lim←−Gn. Then
G is a connected locally compact group which admits no nontrivial connected compact
normal subgroups.

In order to prove Theorem 4.1, we need one last elementary lemma.

Lemma 4.5. Let G be a topological group and N a normal subgroup. Then tI(G) ≤
tI(N) + tI(G/N). In particular if G/N and N are infinitesimally finitely generated then
so is G.

Proof of Theorem 4.1. Let G be a connected separable locally compact group. Let KCG
be a compact normal subgroup such thatG/K is a Lie group (see Theorem 4.3), and letK◦
be its identity connected component. Then K◦ is characteristic in K and therefore normal
in G. Being a closed subgroup of a locally compact separable group, K◦ is separable
[CI77]. Let H = G/K◦ and Kt = K/K◦. By the isomorphism theorem, G/K ∼= H/Kt.
Note that Kt is a pro-finite group, hence by Proposition 2.1 H is infinitesimally finitely
generated. By Theorem 3.1, K◦ is infinitesimally finitely generated, hence, by Lemma
4.5, G is infinitesimally finitely generated.
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5 Quasi non-archimedean groups
A topological group is non-archimedean if it has a basis of neighborhoods of the identity
made of open subgroups. Equivalently, every neighborhood of the identity V contains a
smaller neighborhood of the identity U such that the group generated by U is contained
in V , which is the same as requiring that for every n ∈ N and g1, . . . , gn ∈ U , the group
generated by g1, . . . , gn is contained in V . The definition that follows is obtained by
switching two quantifiers in the above condition.

Definition 5.1. Say a topological group G is quasi non-archimedean if for all n ∈ N
and all neighborhoods of the identity V ⊆ G, there exists a neighborhood of the identity
U ⊆ V such that for all g1, . . . , gn ∈ U , the group generated by g1, . . . , gn is contained in
V .

Clearly every non-archimedean group is also quasi non-archimedean. Let us give right
away the motivating example for this definition. We fix a standard probability space
(X,µ), that is, a probability space which is isomorphic to the interval [0, 1] with its Borel
σ-algebra and the Lebesgue-measure.

A Borel bijection T of X is called a non-singular automorphism if for all mea-
surable A ⊆ X, one has µ(A) = 0 if and only if µ(T−1(A)) = 0. The group of all these
automorphisms is denoted by Aut∗(X,µ), two such automorphisms being identified if they
coincide on a full measure set. We then define the uniform metric du on Aut∗(X,µ) by:
for all T, U ∈ Aut∗(X,µ),

du(T, U) = µ({x ∈ X : T (x) 6= U(x)}).

This is a complete metric, though far from being separable (e.g. the group S1 acts freely
on itself, yielding an uncountable discrete subgroup of (Aut∗(X,µ), du)). But among
closed subgroups of (Aut∗(X,µ), du), full groups are separable. Full groups are invariants
of orbit equivalence attached to nonsingular actions of countable groups on (X,µ): given
a non-singular action of a countable group Γ on (X,µ), its full group [RΓ] is the group of
all T ∈ Aut∗(X,µ) such that for every x ∈ X, T (x) ∈ Γ · x.

Since every subgroup of a quasi non-archimedean group is quasi non-archimedean
for the induced topology, the following result implies that full groups are quasi non-
archimedean.

Theorem 5.2 (Kechris). Aut∗(X,µ) is quasi non-archimedean for the uniform metric.

Proof. Define the support of T ∈ Aut∗(X,µ) to be the set of all x ∈ X such that
T (x) 6= x. Note that du(idX , T ) is precisely the measure of the support of T .

Let ε > 0 and n ∈ N, and consider the open ball U := Bdu(idX , ε). Suppose that
g1, . . . , gn belong to V := Bdu(idX, ε/n), and let A be the union of their supports. By as-
sumption, A has measure less than ε. Then the group generated by g1, . . . , gn is contained
in the group of elements supported in A, which is itself a subset of U = Bdu(idX , ε).

The following proposition shows that the class of quasi non-archimedean groups sat-
isfies basically the same closure properties as the class of non-archimedean groups.

Proposition 5.3. The class of quasi non-archimedean groups is closed under taking sub-
groups, products and quotients (with the induced topologies).
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The next proposition highlights the main difference between non-archimedean and
quasi non-archimedean groups. From now on, we will restrict ourselves to the narrower
but well-behaved class of Polish groups, that is, separable groups whose topology ad-
mits a compatible complete metric, e.g. full groups for the uniform topology, the group
Aut∗(X,µ) endowed with the weak topology, or the unitary group of a separable Hilbert
space endowed with the strong operator topology. Let us point out that a locally compact
group is Polish if and only if it is second-countable (see [Kec95, Thm. 5.3]).

Recall that if G is a Polish group and (X,µ) is a standard (non-atomic) probability
space, then the group L0(X,µ,G) of measurable maps from X to G is a Polish group for
the topology of convergence in measure, two such maps being identified if they coincide
on a full measure set. A basis of neighborhoods of the identity for this topology is given
by the sets

Ũε = {f ∈ L0(X,µ,G) : µ({x ∈ X : f(x) 6∈ U}) < ε},

where U is an open neighborhood of the identity in G and ε > 0. The Polish group
L0(X,µ,G) enjoys the two following nice properties (see e.g. [Kec10, Chap. 19]) .

• G embeds into L0(X,µ,G) via constant maps.

• L0(X,µ,G) is connected, in fact contractible.

Proposition 5.4. Let G be a quasi non-archimedean Polish group. Then L0(X,µ,G) is
quasi non-archimedean. In particular any quasi non-archimedean Polish group embeds in
a connected quasi non-archimedean Polish group.

Proof. Let Ũε = {f : µ({x ∈ X : f(x) 6∈ U}) < ε} be a basic neighborhood of the
identity in L0(X,µ,G) and let n ∈ N. Since G is quasi non-archimedean, we find an
open neighborhood of the identity V ⊆ G such that the groups generated by any n
elements of V are subsets of U . Consider the following open neighborhood of the identity
in L0(X,µ,G):

Ṽε/n = {f : µ({x ∈ X : f(x) 6∈ V }) < ε/n}.

Then if for every f1, . . . , fn ∈ Ṽε,n, the union of the sets {x ∈ X : fi(x) 6∈ V } has measure
less than ε. By the definition of V and U the group generated by f1, . . . , fn is thus a
subset of Ũε, and we conclude that L0(X,µ,G) is quasi non-archimedean.

Remark. Since non-archimedean groups are totally disconnected, the above proposition
implies there are a lot more quasi non-archimedean groups than the non-archimedean
ones.

The following proposition is inspired by Section (D) of Chapter 4 in [Kec10], where
it is shown that any continuous homomorphism from an infinitesimally finitely generated
group into a full group is trivial.

Proposition 5.5. Any continuous homomorphism from an infinitesimally finitely gener-
ated group into a quasi non-archimedean group is trivial.

Proof. Let ϕ : G → H be such a morphism, let V be any neighborhood of the identity
in H, and let n = tI(G). Then there is a neighborhood of the identity U in H such
that any subgroup of H generated by n elements of U is contained in V . Since ϕ is
continuous, ϕ−1(U) is a neighborhood of the identity in G, and because tI(G) = n we
may find g1, . . . , gn ∈ ϕ−1(U) which generate a dense subgroup in G. Then the closure of
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ϕ(G) coincides with the closure of the group generated by ϕ(g1), . . . , ϕ(gn) ∈ U , which by
assumption is contained in V . So ϕ(G) is contained in the closure of any neighborhood
of the identity in H, and since H is Hausdorff this means that ϕ is trivial.

Corollary 5.6. The only topological group which is both infinitesimally finitely generated
and quasi non-archimedean is the trivial group.

Corollary 5.7. Every continuous homomorphism from a connected separable locally com-
pact group into (Aut∗(X,µ), du) is trivial.

Proof. Since every connected separable locally compact group is infinitesimally finitely
generated by Theorem 4.1 and Aut∗(X,µ) is quasi non-archimedean by Theorem 5.2, the
previous proposition readily applies.

As a consequence of the previous proposition and Theorem 1.6, we have the follow-
ing interesting characterizations of connectedness and total disconnectedness for locally
compact separable groups.

Theorem 5.8. Let G be a locally compact separable group. Then the following hold:

(1) G is connected if and only if G is infinitesimally finitely generated.

(2) G is totally disconnected if and only if G is quasi non-archimedean.

Proof. If G is not connected but infinitesimally finitely generated, then G/G0 must also
be infinitesimally finitely generated, which is impossible by van Dantzig’s theorem. The
converse is provided by Theorem 1.6.

If G is totally disconnected, then G is non-archimedean by van Dantzig’s theorem. But
this implies that G is quasi non-archimedean. For the converse, suppose G is quasi non-
archimedean. Then G0 also is, but then by (1) and Proposition 5.5 it must be trivial.

Remark. As was pointed out by Caprace and Cornulier, one can also prove (2) as fol-
lows: If G0 is non-trivial then it admits a non-trivial one-parameter subgroup which is in
particular infinitesimally 2-generated, contradicting Proposition 5.5. This actually gives
a proof that a locally compact group is quasi non-archimedean if and only if it is totally
disconnected, regardless of its separability.

Let us now give an example of a totally disconnected Polish group which is quasi
non-archimedean, but not non-archimedean. This class of examples was introduced by
Tsankov [Tsa06, Sec. 5], using a work of Solecki [Sol99]. We denote by S∞ the group of all
permutations of the integers, equipped with its Polish topology of pointwise convergence.
Recall that every non-archimedean Polish group arises as a closed subgroup of S∞ (see
[BK96, Thm. 1.5.1]). Here, the groups that we will consider are subgroups of S∞, but
equipped with a Polish topology which refines the topology of pointwise convergence.

Definition 5.9. A lower semi-continuous submeasure on N is a function λ : P(N)→
[0,+∞] such that the following hold:

• λ(∅) = 0;

• for all n ∈ N, we have 0 < λ({n}) < +∞;

• for all A ⊆ B ⊆ N, we have λ(A) 6 λ(B);
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• (subadditivity) for all A,B ⊆ N, we have λ(A ∪B) 6 λ(A) + λ(B);

• (lower semi-continuity) for every increasing sequence (Ak)k∈N of subsets of N, we
have λ(

⋃
k∈NAk) = limk∈N λ(Ak).

We associate to every lower semi-continuous submeasure λ on N a subgroup of S∞,
denoted by Sλ, defined by

Sλ = {σ ∈ S∞ : λ(suppσ \ {0, . . . , n})→ 0 [n→ +∞]},

where suppσ = {n ∈ N : σ(n) 6= n}. Note that since µ({0, . . . , n}) < +∞ for every
n ∈ N, the support of every σ ∈ Sλ has finite measure. Also, if λ is actually a measure,
then Sλ = {σ ∈ S∞ : λ(suppσ) < +∞}; furthermore if λ is a probability measure then
Sλ = S∞.

The group Sλ is equipped with a natural left-invariant metric dλ analogous to the
uniform metric on Aut∗(X,µ) defined by

dλ(σ, σ
′) = λ({n ∈ N : σ(n) 6= σ′(n)}).

Note that the condition λ(suppσ \ {0, . . . , n}) → 0 ensures that the countable group of
permutations of finite support is dense in Sλ which is thus separable. It is a theorem
of Tsankov that Sλ is actually a Polish group. The following result is a straightforward
adaptation of Theorem 5.2, replacing du by dλ.

Proposition 5.10. Let λ be a lower semi-continuous submeasure on N. Then Sλ is quasi
non-archimedean.

It is easily checked that the topology of Sλ refines the topology induced by S∞, so
that Sλ is always totally disconnected, and that the open subgroups of Sλ separate points
from the identity (in particular, Sλ is not locally generated). The following example shows
that it can furthermore fail to be non-archimedean. Note that this is just a particular
case of a more general phenomenon: one can actually characterize when the topology fails
to be zero-dimensional1 (see [Tsa06, Thm. 5.3]; the example below is taken from [Mal15,
Cor. 4]).

Example 5.11. Consider the measure λ on N defined by

λ(A) =
∑
n∈A

1

n
.

Then Sλ is not a non-archimedean group. Indeed, if we fix ε > 0 and N ∈ N, we can
find a finite family (Ai)

N
i=1 of disjoint subsets of N such that for every i ∈ {1, . . . , N},

ε
2
< λ(Ai) < ε. For all i ∈ {1, . . . , N}, let σi be a permutation whose support is equal

to Ai. Then σ =
∏N

i=1 σi is at distance at least Nε/2 from the identity, so that the ball
of radius ε around the identity generates a group which contains elements arbitrarily far
away from the identity.

Corollary 5.12. There exists a totally disconnected Polish group which is quasi non-
archimedean, but not non-archimedean.

1A topology is zero-dimensional if it has a basis made of clopen sets.
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Let us now give examples of totally disconnected Polish group which are infinitesimally
finitely generated. To do this, we will upgrade a result of Stevens [Ste86] who showed the
existence of totally disconnected infinitesimally generated Polish groups: we will show that
her examples are actually infinitesimally finitely generated. This will be a consequence
of the following general statement, which also implies the well-known fact that R has a
dense Gδ of pairs of topological generators.

Theorem 5.13. Let G be an abelian Polish group which contains the group Z[1/2] of
dyadic rationals as a dense subgroup, and assume furthermore that in the topology induced
by G on Z[1/2], we have 1

2n
→ 0 [n→ +∞]. Then for every non-identity g0 ∈ Z[1/2], the

set of h ∈ G such that {g0, h} generates a dense subgroup of G is dense.
In particular there is a dense Gδ set of couples of topological generators of G in G2

and so G is infinitesimally finitely generated with infinitesimal rank at most 2.

Proof. Let g0 ∈ Z[1/2]. In order for a couple (g0, h) ∈ G2 to generate a dense subgroup
of G, it suffices for the closed subgroup they generate to contain 1

2n
for every n ∈ N, for

the group Z[1/2] is dense in G. So the set T := {h ∈ G2 : 〈g0, h〉 = G} may be written as
a countable intersection T =

⋂
n∈N Tn, where

Tn :=

{
h ∈ G :

1

2n
∈ 〈g0, h〉

}
.

Since G is Polish the set Tn is Gδ, so we only need to show that Tn is dense. To this end,
fix ε > 0, n ∈ N, and let h0 ∈ Z[1/2]. We want to find h ∈ Tn such that d(h, h0) < ε,
where d is a fixed compatible metric on G.

Write g0 = k1
2m

and h0 = k2
2m

, where k1, k2 ∈ Z and m ∈ N. We will find β ∈ N such
that for all N ∈ N, if h = h0 + β

2m+N , then 〈g0, h〉 contains 1
2N+m , so that in particular it

contains 1
2n

as soon as N +m > n. The group 〈g0, h〉 contains 1
2N+m if and only if we can

find u, v ∈ Z such that ug0 + vh = 1
2m+N . This condition can be rewritten as

2Nk1u+ (2Nk2 + β)v = 1.

So we want to find β ∈ N such that for all N ∈ N we have that 2Nk1 and 2Nk2 + β are
relatively prime. Let us furthermore ask that β is odd, so that we only have to make sure
that every odd prime divisor of k1 does not divide 2Nk2 + β.

Let p1, . . . , pk list the odd primes which divide both k1 and k2, while pk+1, . . . , pl
are the odd primes which divide k1 but not k2. Then it is easily checked that β =
(2 + p1 · · · pk)pk+1 · · · pl works: for all i 6 k we have that β is invertible modulo pi and pi
divides k2 so that 2Nk2 + β is not divisible by pi, while for k < i 6 l, β is null modulo pi
while 2Nk2 is invertible so that 2Nk2 + β is not divisible by pi.

But then, since 1
2m+N tends to zero as N tends to +∞, we also have β

2m+N → 0

[N → +∞]. Then, as explained before, the group generated by g := g0 and h := h0+ β
2m+N

contains 1
2m+N , so that (g, h) ∈ Tn, while 0 = d(g, g0) < ε and d(h, h0) < ε if N was chosen

large enough.
So every Tn is a dense subset of G, which ends the proof since this furthermore shows

that the set of couples generating a dense subgroup of G is dense in G2 and this set has
to be a Gδ.

Let us now apply the previous theorem and describe Steven’s examples of Polish groups
which are infinitesimally finitely generated but totally disconnected. These groups arise as
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a Polishable subgroups of the real line, constructed by taking a completion of the dyadic
rationals with respect to a well chosen norm which makes 2−n have much bigger norm
than usually.

We fix a biinfinite sequence of positive real number (ri)i∈Z such that ri → 0[i→ +∞]
and for all i ∈ Z, we have ri+1 6 ri 6 2ri+1. Then one can define the following group
norm2 ‖·‖ on the ring Z[1/2] of dyadic rationals: for every x ∈ Z[1/2],

‖x‖ := inf

{
n∑

i=−n

|ai| ri : x =
n∑

i=−n

ai2
−i, ai ∈ Z, n ∈ N

}
.

It is easy to check that this defines a group norm on Z[1/2] which refines the usual norm.
Using the fact that ri 6 2ri+1, one can easily show that for all x ∈ Z[1/2],

‖x‖ = inf

{
n∑

i=−n

|ai| ri : x =
n∑

i=−n

ai2
−i, ai ∈ {−1, 0, 1}, n ∈ N

}
.

In particular, we see that for all n ∈ N, we have ‖2−n‖ = rn so that 2−n → 0 as n→ +∞.
Let Z[1/2]

‖·‖
denote the completion of Z[1/2] with respect to this norm. Since this norm

refines the usual norm, Z[1/2]
‖·‖

is a subgroup of R. Stevens explicitely described the
elements of R belonging to Z[1/2]

‖·‖
and showed that the group Z[1/2]

‖·‖
is infinitesimally

generated [Ste86, Thm. 2.1 (ii)], and we see that Theorem 5.13 strengthens this because
it implies that Z[1/2]

‖·‖
is infinitesimally 2-generated.

To obtain totally disconnected examples, we need another result of Stevens stating
that the following are equivalent (see [Ste86, Thm. 2.2]):

(i)
∑

i∈N ri = +∞,

(ii) ‖·‖ is not equivalent to |·| when restricted to Z[1/2],

(iii) Q ∩ Z[1/2]
‖·‖

= Z[1/2],

(iv) Z[1/2]
‖·‖

is totally disconnected,

Remark. Note that every subgroup G of R which is not equal to R has to be totally
disconnected for the induced topology, since its complement is dense in R so that the sets
of the form ]r,+∞[ for r ∈ R\G are clopen in G. In particular, if G is a proper subgroup
of R equipped with a topology which refines the usual topology of R then G is totally
disconnected. So conditions (ii) and condition (iii) clearly imply condition (iv).

So suppose further that
∑

i∈N ri = +∞ (e.g. take ri = 1 if i 6 0 and ri = 1
i
otherwise).

Then we see that Z[1/2]
‖·‖

is a totally disconnected Polish group which has infinitesimal
rank at most 2. Moreover since this group is a subgroup of the real line endowed with a
finer topology (see [Ste86, Thm. 2.1]) it cannot be monothetic, so its infinitesimal rank
is actually equal to 2.

Corollary 5.14. There exists a totally disconnected Polish group which has infinitesimal
rank 2, in particular there is a totally disconnected Polish group which is not quasi non-
archimedean.

2A norm on an abelian group is a function |·| : G → [0,+∞) such that for any x, y ∈ G, |x+ y| 6
|x|+ |y|, and |x| = |−x|.
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Remark. Note that one can see directly that Stevens’ groups are not quasi non-archimedean,
even for n = 1. Indeed, if U is a neighborhood of 0 not containing 1, then if V is another
neighborhood of 0 there is some N ∈ N such that 1/2N ∈ V , but the group generated by
1/2N contains 1 hence it is not a subset of U .

We know that while the group of the reals has infinitesimal rank 2, its quotient S1 =
R/Z has infinitesimal rank 1. The same is true of Stevens’ examples, which is going to
yield the following result.

Theorem 5.15. There exists a totally disconnected Polish group which has infinitesimal
rank 1.

Proof. Let G be a totally disconnected Polish group obtained by Stevens’ construction
from a sequence ; then G is a proper subgroup of R containing Z[1/2] as a dense subgroup.
Observe that Z is a discrete subgroup of G and we may thus form the Polish group
G̃ := G/Z.

The group G̃ is a proper dense subgroup of S1 = R/Z, so S1 \ G̃ is thus dense in S1.
Let A = p([0, 1/2[) where p : R → R/Z is the usual projection, then for all g ∈ S1 \ G̃
the set (g+A)∩ G̃ is clopen in G̃. Moreover since S1 \ G̃ is dense in S1 the family of sets
((g + A) ∩ G̃)g∈S1\G̃ separates points in G̃, so G̃ is totally disconnected.

Furthermore, we have by Theorem 5.13 that there is a dense Gδ of h ∈ G such that
the group generated by 1 and h is dense in G. Since 1 ∈ Z and G̃ = G/Z we conclude
that there is a dense Gδ of h ∈ G̃ which generate a dense subgroup in G̃, in particular G̃
has infinitesimal rank 1.

We don’t know an example of a totally disconnected Polish group which is infinites-
imally generated and quasi non-archimedean. Moreover, we want to stress out that all
the examples we know of Polish groups which are quasi non-archimedean actually fail
the property even for n = 1, so it would be very interesting to have examples having a
“non-QNA rank” greater than 1.

6 Further remarks and questions
Let us point out how one can easily build Polish groups into which no non-discrete locally
compact group can embed.

Lemma 6.1. Let Γ be a countable discrete group without elements of finite order. Then
every monothetic subgroup of L0(X,µ,Γ) is infinite discrete. In particular, no nontrivial
compact group embeds into L0(X,µ,Γ).

Proof. Given 1 6= f ∈ L0(X,µ,Γ), find A ⊆ X non-null and γ ∈ Γ \ {1} such that f�A is
constant equal to γ. By assumption, for all n ∈ Z \ {0}, the support of fn contains A,
and so 〈f〉 is discrete.

Theorem 6.2. Let Γ be a countable discrete group without elements of finite order, and let
G be a separable locally compact group. Then every continuous morphism G→ L0(X,µ,Γ)
factors through a discrete group.

Proof. Let G0 be the connected component of the identity. Because L0(X,µ,Γ) is quasi
non-archimedean, π factors through G/G0 by Proposition 5.5 and Theorem 1.6. Then by
van Dantzig’s theorem and the previous lemma, the kernel of the later map contains an
open subgroup of G/G0, hence it factors through a discrete group.
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Question 6.3. Is there a Polish group without any locally compact closed subgroup?

The group L0(X,µ,G) was originally introduced to show that every Polish group
embeds into a connected group, and we saw that being quasi non-archimedean is somehow
opposite to being connected. Because L0(X,µ,G) can be quasi non-archimedean, one
may ask whether every Polish group embeds into a connected not quasi non-archimedean
group. The isometry group of the Urysohn space answers this question very positively
— it is universal for Polish groups, connected (see [Mel06, Mel10] for stronger versions
of these results as well as background on the Urysohn space) and by a result of Slutsky,
it is actually infinitesimally 2-generated (see [Slu12, Thm. 4.19]) hence not quasi non-
archimedean.

Remark. There is a natural intermediate property between being infinitesimally finitely
generated and being infinitesimally generated: one could ask that every identity neigh-
borhood contains a finite set generating a dense subgroup. However a straightforward
argument shows that this is equivalent to being topologically finitely generated and in-
finitesimally generated.

Let us end this paper by mentioning a question related to ample generics. A Pol-
ish group G has ample generics if the diagonal conjugacy action of G onto Gn has a
comeager orbit for every n ∈ N (see [KR07]). It has been recently discovered that there
exists Polish groups with ample generics which are not non-archimedean (see[KLM15] and
[Mal15]). These examples arise either as full groups or as groups of the form Sλ, which
are quasi non-archimedean groups by Theorem 5.2 and Proposition 5.10. This motivates
the following question.

Question 6.4. Is there a Polish group which has ample generics, but which is not quasi
non-archimedean?
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