Highly faithful actions and dense free subgroups in

full groups

Francois Le Maitre!

Abstract

In this paper, we show that every measure-preserving ergodic equivalence
relation of cost less than m comes from a “rich” faithful invariant random
subgroup of the free group on m generators, strengthening a result of Bowen
which had been obtained by a Baire category argument.

Our proof is completely explicit: we use our previous construction of topo-
logical generators for full groups and observe that these generators induce a
totally non free action. We then twist this construction so that the action is
moreover amenable onto almost every orbit and highly faithful.

In particular, we obtain that the full group of a measure-preserving ergodic
equivalence of cost less than m contains a dense free subgroup on m generators.
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1 Introduction

A natural conjugacy-invariant for a measure-preserving action of a countable group
" on a standard probability space (X, i) is the associated measure-preserving equiv-
alence relation Rr defined by (z,y) € Rr if and only if I'z = I'y. Such equivalence
relations are studied up to orbit equivalence, that is up to isomorphism and restric-
tions to full measure sets.

Measure-preserving actions of countable groups are often asked to be free: ev-
ery non-trivial group element fixes almost no point. The study of free measure-
preserving actions up to orbit equivalence is well developed and has fruitful connec-
tions to measured group theory and von Neumann algebras, see [Gabl10] for a recent
overview.

The theory of cost, introduced by Levitt [Lev95| and developed by Gaboriau
[Gab00], has proven to be invaluable in this area. The cost of a measure-preserving
equivalence relation R is the infimum of the measures of its generating setd] thus
providing an analogue of the rank of a countable group for measure-preserving equiv-
alence relations. A fundamental theorem due to Gaboriau is that every free action
of the free group on m generators induces a measure-preserving equivalence relation
of cost m (see [Gab00l, Cor. 1]).

In this paper, we are interested in non-free actions of F,,. Our starting point
is the contrapositive of Gaboriau’s aforementioned theorem: a measure preserving
equivalence relation of cost less than m cannot come from a free action of F,,.
Moreover, an easy consequence of Gaboriau’s results is that every ergodic measure-
preserving equivalence relation of cost less than m comes from a non-free action of
F...

It is then natural to search for some strengthening of non-freeness for F,,-actions
so as to further classify measure-preserving equivalence relations of cost less than
m. We thus ask:

Question 1. Consider a measure-preserving ergodic equivalence relation of cost less
than m. How non-free can the F,,-actions that induce it be?

We now list three ways a measure-preserving action of the free group on m > 2
generators can be thought of as “very” non-free.

1.1 Non freeness I: Amenability onto almost every orbit

Definition 1.1. An action of a countable group I" on a set Y is called amenable if
it admits a sequence of almost invariant sets, i.e. if there exists a sequence of finite
subsets (F,,) of Y such that for all v € T,

WFnAFn’

— 0[n — +o0.
|l

A countable group I' is amenable if its left action onto itself by translation is
amenable.

1See section [2| for a precise definition.



The group of integers Z is a key example of an amenable group (the sequence
of intervals [—n,n| is almost invariant). On the other hand, for any n > 2 the free
group F,, is not amenable: for instance, one can build a Ponzi scheme on it (see

[Gro99 Cor. 6.18]).

Definition 1.2. A measure-preserving action of a countable group I' on a standard
probability space (X, i) is called amenable onto almost every orbit if for almost
every x € X, the I'-action on I' - x is amenable.

Example 1.3. Suppose that I' ~ (X, ) is a free measure-preserving action. Then
for almost every = € X, the I'-equivariant map I' — I' - « which takes v € I' to v -z
is a bijection. Hence almost all the actions on the orbits are conjugate to the left
[-action onto itselft by translation. So a free I'-action on (X, p) is amenable onto
almost every orbit if and only if I is amenable.

We deduce from the previous example that for all n > 2, a free measure-
preserving action of the free group FF,, is never amenable onto almost every orbit. In
particular, measure-preserving actions of IF,, which are amenable onto almost every
orbit can be thought of as very non-free actions. Examples of non-amenable measure-
preserving equivalence relations coming from F,,-actions which are amenable onto
almost every orbit were first constructed by Kaimanovich [Kai97].

1.2 Non freeness II: High transitivity onto almost every orbit

Definition 1.4. Let I" be a countable group acting on a set Y. The action is highly
transitive if for every n € N, the diagonal I'-action on the set of n-tuples made of
pairwise distinct elements of Y is transitive.

To be more precise , the action is highly transitive if for every n € N, every
pairwise distinct yy, ..., y, € Y and every pairwise distinct v, ..., 7, € Y, there exists
v € T" such that for all ¢ € {1,...,n}, we have v -y; = y..

As an example, the natural action of the group of finitely supported permuta-
tions of the integers is highly transitive. It has been an ongoing research theme
to understand which countable groups admit faithful highly transitive actions; see
[HO15] for a striking recent result in that area.

It is a well-known fact that a permutation group I' < &(Y') is highly transi-
tive if and only if it is dense for the topology of pointwise convergence. Note that a
nontrivial highly transitive action can never be free. The following definition was in-
troduced by Eisenmann and Glasner [EG14] and can also be seen as a strengthening
of non-freeness for measure-preserving actions.

Definition 1.5. Let R be a measure-preserving equivalence relation on a standard
probability space (X, u). A measure-preserving action of a countable group I' on
(X, p) is almost surely highly transitive on R-classes if for almost every z € X,
" preserves the equivalence class [z]z and acts on it in a highly transitive manner.

There is a very nice sufficient condition for a group to act almost surely highly
transitively on R-classes and to state it we need to introduce full groups.



Definition 1.6. Let R be a measure-preserving equivalence relation. Its full group,
denoted by [R], is the group of all measure-preserving Borel bijections T" of (X, u)
such that for all x € X, we have T'(z) € [z]g. Moreover, two such bijections are
identified if they coincide up to a null set.

Whenever T" and U are measure-preserving bijections of (X, i), one can define
the uniform distance between them by

d,(T,U) = p({x € X : T(z) # U(z)}).

Whenever R is a measure-preserving equivalence relation, the uniform metric
induces a complete separable metric on its full group which is thus a Polish group
(see e.g. [Kecl0l, Prop. 3.2]).

We may now state Eisenmann and Glasner’s result.

Theorem 1.7 ([EGI4, Prop. 1.19]). Let R be a measure-preserving equivalence
relation. Let T' < [R] be a countable dense subgroup of [R]. Then T’ acts almost
surely highly transitively on R-classes.

It is not true in general that any almost surely highly transitive action comes
from a dense embedding into a full group?} However in the ergodic case the question
of the converse was asked by Eisenmann and Glasner.

1.3 Non freeness III: Total non freeness

To state properly one last possible definition for an action to be very non free, we
need to introduce invariant random subgroups, which are important invariants of
non-free measure-preserving actions.

Let T be a countable group. We denote by Sub(I') C {0,1}!' the space of
closed subgroups of I', which is a closed subspace of the compact metrizable space
{0,1}! equipped with the product topology. With the induced topology, Sub(T) is
thus a compact metrizable space naturally acted upon by I' via conjugacy: for any
A € Sub(T') and any v € T, one lets v - A := yAy~ L.

Definition 1.8. An invariant random subgroup (or IRS) of a countable group
' is a [-invariant Borel probability measure on Sub(I").

Let I' ~ (X, ) be a measure-preserving action. The map Stab : X — Sub(I)
which maps = € X to Stabrp(z) is ['-equivariant, so by pushing forward the measure
i we obtain an IRS Stab,p of I'. Abert, Glasner and Virag have shown that the con-
verse is true: every IRS of I' can be written as Stab,u for some measure-preserving
[-action on (X, ) [AGV14, Prop. 13].

Definition 1.9 (Vershik). Let I' ~ (X, ) be a measure-preserving action. It is
called totally non free if the map Stab : (X, u) — (Sub(I'), Stab,u) is a conjugacy.

2To see this, start with I' ~ (X, ) which is almost surely highly transitive on R-classes. Then
consider the T-action on two disjoint copies of (X, u) and let R’ be the associated equivalence
relation. The new action is almost surely highly transitive on R’-classes, but I is not dense in [R/]
since any element of the closed subgroup generated by I' has to act the same on the two copies of

(X, ).



Note that since the map Stab is I'-equivariant, the only thing one has to check
in order to know that an action is totally non free is that Stab becomes injective
when restricted to a suitable full measure subset of X. In the setting of full groups,
our observation is the following.

Proposition 1.10 (see Proposition . Let R be a measure-preserving apem’odz’cﬂ
equivalence relation. If T' < [R] is a dense countable subgroup, then the T'-action is
totally non free.

Bowen obtained a satisfactory answer to Question [I]in the context of totally non-
free actions: he showed by a Baire category argument that whenever R is an ergodic
equivalence relation of cost less than n, there exists a totally non free action of the
free group on n generators which induces the equivalence relation R [Bowl5|. We
remark that this result can also be obtained by combining the previous proposition
with [LMI14, Thm. 1].

1.4 Statement of the main result

Our main result is that the above conditions for non-freeness can be achieved all
at once along with high faithfulness. The latter is a strengthening of the notion of
faithfulness and is somehow dual to high transitivity (see Section [3|for more on this
notion; our definition differs significantly from the one given by Fima, Moon and

Stalder in [FMS15]).

Definition 1.11. A transitive action of a countable group I' on a set Y is highly
faithful if for all n € N and all pairwise distinct vy, ...,7, € I', there exists y € Y
such that for all distinct 4,5 € {1,...,n}, we have v, - y # 7, - v.

Note that the natural action of the group of finitely supported permutations of
the integers is highly transitive faithful, but not highly faithful. It would be inter-
esting to understand which countable groups admit highly faithful highly transitive
actions.

A measure-preserving action of a countable group is called highly faithful if it is
highly faithful onto almost every orbit. Here this notion was useful to us in order to
obtain sequences of sets with nice disjointness properties (see item (5)) in Theorem
and also to produce (highly) faithful actions for some free products via Theorem
[1.5] We can now state our main result, which upgrades [LM14, Thm. 1].

Theorem 1.12. Let R be an ergodic equivalence relation with finite cost. Then for
all m € N such that m > Cost(R) there is a dense free group on m generators in

the full group of R whose action is moreover amenable onto almost every orbit and
highly faithful.

As a corollary, we can strengthen Bowen’s Theorem and generalize a result that
Eisenmann and Glasner had obtained for cost 1 ergodic measure-preserving equiva-
lence relations by a Baire category argument [EG14, Cor. 21].

3 A measure-preserving equivalence relation is aperiodic if almost all its classes are infinite.



Corollary 1.13. Let R be an ergodic equivalence relation with finite cost. Then for
all m € N such that m > Cost(R) there is a totally non-free highly faithful action
of F,, which induces the equivalence relation R and which is highly transitive and
amenable onto almost every orbit.

Proof. By Proposition and Theorem [1.7], the F,,-action obtained via Theorem
is totally non free and highly transitive onto almost every orbit. Since it is also
highly faithful and amenable onto almost every orbit, we are done. O

Since total non-freeness implies that the stabiliser map is an isomorphism, the
above result implies the following statement about invariant random subgroups (see
[EG14] for the definitions of the terms used thereafter).

Corollary 1.14. Let R be an ergodic equivalence relation with finite cost. Then
for all m € N such that m > Cost(R) there is an IRS of F,, which induces the
equivalence relation R and which is core-free, co-highly transitive and co-amenable.

All the above results admit non-ergodic counterparts where we require R to
be aperiodic and its conditional cost to be almost surely less than m. However
supposing that the equivalence relation is ergodic makes proofs much lighter and we
hope this will help convey the ideas of this work. The interested reader will be able
to “convert” the proofs presented here to their non-ergodic analogues by a careful
reading of [LMT5].

We now give an outline of this paper. The next section is devoted to notation and
the proof of Proposition[I.10} In Section [3]we introduce and study high faithfulness.
In Section [4] we build highly faithful actions of free products I' x A where I' already
acts highly faithfully and A is any residually finite group. Section [5]is devoted to
a flexible construction of topological generators for the full group of the hyperfinite
ergodic equivalence relation. Theorem is finally proven in Section [6]

Aknowledgments. I would like to thank the anonymous referee for her or his
helpful comments.

2 Preliminaries

Let (X, ) be a standard probability space. We will always work modulo sets of
measure zero. Let us first briefly review some notation and definitions.

We denote by Aut(X, u) the group of all measure-preserving Borel bijections of
(X, u). Given T' € Aut(X, p), its support is the set supp T := {z € X : T'(z) # x}.

Let A and B be Borel subsets of X, a partial isomorphism of (X, x) of do-
main A and range B is a Borel bijection f : A — B which is measure-preserving
for the measures induced by p on A and B respectively. A graphing is a countable
set ® = {¢1, ..., Yk, ...} where the p,’s are partial isomorphisms. It generates a
measure-preserving equivalence relation R¢, defined to be the smallest equiv-
alence relation containing the graphs of the partial isomorphisms belonging to ®.
The cost of a graphing ® is the sum of the measures of the domains of the partial
isomorphisms it contains. The cost of a measure-preserving equivalence relation R
is the infimum of the costs of the graphings that generate it, we denote it by Cost(R).
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The cost of R is attained if there exists a graphing ® which generates R such that
Cost(®) = Cost(R). We refer the reader to the lectures notes by Gaboriaif]| for an
efficient overview of cost theory.

The full group of R is the group [R] of automorphisms of (X, 1) which preserve
the R-classes, that is

R] ={¢ € Aut(X,u) : Vo € X, p(x) Rz}

It is a Polish group when equipped with the complete biinvariant metric d,, defined
by
d,(T,U) = p({w € X : T(x) # U(x)}.

One also defines the pseudo full group of R, denoted by [[R]], which consists of
all partial isomorphisms ¢ such that ¢(z) Rz for all z € dom .

Let p € N. A pre-p-cycle is a graphing ® = {¢1, ..., p,_1 } such that the following
two conditions are satisfied:

(i) Vi e {1,...,p — 2}, g p; = dom ;.
(ii) The following sets are all disjoint:

dom ¢, dom ¢y, ...,dom ¢,_1, 108 ©,_;.

A p-cycle is an element C' € Aut(X, 1) whose orbits have cardinality 1 or p.
Given a pre-p-cycle & = {¢1,...,pp_1}, we can extend it to a p-cycle Cp €
Aut(X, u) as follows:

wi(x) if x € dom ¢; for some ¢ < p,
Co(z) =19 @i'py' @t (x) if 2 €engep,,
T otherwise.

Say that a measure-preserving equivalence relation R is ergodic when every
Borel R-saturated set has measure 0 or 1. The following standard fact about ergodic
measure-preserving equivalence relations is the main source of pre-p-cycles, and
hence of p-cycles.

Proposition 2.1 (see e.g. |[KMO04], lemma 7.10.). Let R be an ergodic measure-
preserving equivalence relation on (X, u), let A and B be two Borel subsets of X
such that (A) = p(B). Then there exists ¢ € [[R]] of domain A and range B.

The following theorem is fundamental for building dense subgroups of full groups.

Theorem 2.2 (|[KT10], Thm. 4.7). Let Ry, Ra,... be measure-preserving equiv-
alence relations on (X, pn), and let R be their join (i.e. the smallest equivalence

relation containing all of them). Then (|, cx[Ra)) is dense in [R].

An easy application is the following proposition.

4These are available online at http://perso.ens-1lyon.fr/gaboriau/Travaux-Publi/
Copenhagen/Copenhagen-Lectures.html,


http://perso.ens-lyon.fr/gaboriau/Travaux-Publi/Copenhagen/Copenhagen-Lectures.html
http://perso.ens-lyon.fr/gaboriau/Travaux-Publi/Copenhagen/Copenhagen-Lectures.html

Proposition 2.3 (JLM14], Prop. 10]). If ® = {¢1, ..., pp_1} is a pre-p-cycle, then for
alli € {1,...,p—1}, the full group of Re is topologically generated by [Ri,3]U{Cs}.

Let us finally turn to the relationship between dense subgroups of full groups
and total non freeness that we mentioned in the introduction.

Proposition 2.4. Let R be a measure-preserving aperiodic equivalence relation. If
' < [R] is a dense countable subgroup, then the I'-action is totally non free.

Proof. We will work in the setting of measure algebraeﬂ to see that Stab : (X, u) —
(Sub(I"), Stab,u) is a bijection between full measure sets, it suffices to show that
the injective map Stab™' : MAlg(Sub(T"), Stab, ) — MAlg(X, i) is also surjective.
Moreover since its image is closed, it suffices to show that its image is dense.

For all v € I', let A, := {A € Sub(I") : v € A}. Then for all v € T', we have
Stab™'(A,) = supp(y). So it suffices to show that the family (supp(7y)),er is dense
in MAlg(X, ). But this follows from the density of I' in [R] and the well-known
fact that for all A € MAlg(X, u), there exists T' € [R] such that supp(T) = A. O

3 Highly faithful actions

Let us now study in details the notion of a highly faithful action.

Definition 3.1. An action of a countable group I'" on a countable set Y is called
n-faithful if for any ~,...,v, € I'\ {1}, there exists y € Y such that v,y # y for all
t =1,...,n. The action is highly faithful if it is n-faithful for every n € N; in other
words if for any finite subset F' C I \ {1}, there exists y € Y such that fy # y for
all f e F.

Note that every free action is highly faithful, and that an action is faithful iff
it is 1-faithful. A simple example of a faithful action of an infinite group which is
not highly faithful is given by the group &« of finitely supported permutations of
N acting on N. Note that this action is however highly transitive. I don’t know if
S () can have a highly transitive highly faithful action.

Lemma 3.2. Let I be a countable group acting on a set Y. Then the action is
highly faithful iff for all m € N and all pairwise distinct vy, ...,v, € ', there exists
y €Y such that for all distinct i,j € {1,...,n},

VY F VY-

Proof. Apply the definition of high faithfulness to the finite set F' := {”yfyj_l D1
je{l,...,n}} O

The previous lemma has the following nice geometric interpretation when I' is
a finitely generated group: a transitive action is highly faithful if and only if the
associated Schreier graph contains arbitrarily large balls of the Cayley graph of
(I, S) for some (or any) finite generating set S.

In this article our focus will be on the measured version of high faithfulness.

5See [Gla03, Chap. 2] for some background on measure algebras.
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Definition 3.3. A measure-preserving action of a countable group I" on a probability
space (X, u) is called highly faithful if for almost every x € X, the I'-action on
I' - z is highly faithful.

We will now give a useful characterization of highly faithful actions. The proof
uses the following well-known lemma.

Lemma 3.4 (see e.g. [EG14, Lem. 5.1|). Let T € Aut(X, u), let A C X such that
p({z € A:T(x) # x}) > 0. Then there exists a positive measure set A" C A such
that A" and T(A’) are disjoint.

Theorem 3.5. Let I be a countable group and fix a measure-preserving ergodic
[-action on (X, ). Then the following are equivalent:

(1) the I'-action is highly-faithful;

(2) for all finite F C T'\ {1}, the set {x € X : Vf € F, fx # x} has positive

measure,

(3) for all finite F C T, there exists a positive measure set A C X such that (fA)ser
15 disjoint;

(4) there exists an increasing exhaustive family (F,) of finite subsets of T' and a
sequence of positive measure subsets (A,) of X such that (fA,)fer, nen is dis-
joint;

(5) whenever (F,) is an increasing exhaustive family of finite sets (F,) of ', there
exists a sequence of positive measure subsets (A,,) of X such that (fA,)er, nen
is disjoint.

Proof. The chain of implications (5) = (4) = (3) = (2) is straightforward. Note
that by ergodicity given a countable family of Borel sets, all its members are of
positive measure if and only if almost every I'-orbit intersects each of its members.
In particular condition (2) is satisfied if and only if the I'-action onto almost every
orbit is highly faithful, so the equivalence (1) < (2) holds. Also (5) follows from (4)
since given any two exhaustive increasing sequences (F),), (F!) of subsets of ', there
exists an increasing map ¢ : N — N such that for all n» € N we have F), C F, ).

Let us show that (2) implies (3). Let F' be a finite subset of I', consider the set
F={f'"fi: i€Ff€Ffi#f} By (2) and an inductive application of
Lemma [3.4] we find A C X of positive measure such that for all f € F', fANA = 0.
But then for all f; # f, € F, we have f, 'fiANA =10, so fLAN foA = 0, which
establishes (3).

We now only have to prove that (3) implies (4), so let us assume (3). We fix an
increasing exhausting sequence (F,,) of finite subsets of I" such that 1 € Fy. Using
(3) repeatedly, we obtain a sequence (B,,) of positive measure subsets of X such
that for all n € N, the family (fB,,)er, is disjoint. By inductively taking smaller
subsets, we may assume that for all n € N,

1
| Eal [Fua] i Br) < 5 11(B)-



This implies that for all n > 0 and m > 1, we have the inequality

1
| Fal [Fptm| (Brm) < 4_mM(Bn)'

n
inequality implies that each A, has positive measure.

Letn>0,m>1, f| € F, and f5 € F,1,,. By construction, the set A, is disjoint
from f; ' foByim. Since B, contains A, ., we deduce that A, is disjoint from
fi Lo A, m so that fi A, is disjoint from foA, . Since A, is a subset of B, whose
F,-translates are disjoint, this means that the sequence (fA,)fer, nen is made of
pairwise disjoint sets as required. O

Foralln € N, let A, := B, \U, > FE, 4 mBpim. Since Y oms1 4,% < 1, the previous

Remark. The non-ergodic version of the previous theorem is obtained by asking in
(2), (3), (4) and (5) that the sets which are considered intersect almost every orbit.

4 Residually finite groups and high faithfulness

Let us first recast one definition of residual finiteness in terms of sequences of actions
on finite sets.

Definition 4.1. Let ' be a countable group, and let (X, a,, 0,) be a sequence of
pointed ['-actions on finite sets. The sequence is asymptotically free if for all
v € I'\ {1}, there exists N € N such that for all n > N, one has v - 0, # 0,.

The following lemma is proven exactly as Lemma [3.2]

Lemma 4.2. Let I' be a countable group, and let (X,, ay,,0,) be an asymptotically
free sequence of pointed I'-actions on finite sets. Then for all finite F C T', there
exists N € N such that for alln > N and all distinct v,~" € F, one has o, # ¥ 0,.

Definition 4.3. A countable group I' is residually finite if it admits an asymp-
totically free sequence of pointed actions on finite sets.

The following lemma is well-known and can be used to show that every residually
finite group embeds into the full group of any ergodic measure-preserving equivalence
relation (see. [Kecl0) 4.(E)] for more on this). We include a proof for completeness.

Lemma 4.4. Let R be a countable measure-preserving ergodic equivalence relation
on (X, ). Suppose that K is a finite set acted upon by a countable group A, and let
(Cr)rer be a family of disjoint subsets of X, all of the same measure.

Then there is a homomorphismt : A — [Ry, _,. ¢,] such that for allx € Uy Ck,
the A-action on the A-orbit of x is conjugate to the A-action on K, and moreover
for all X € A and all k € K, one has t(A\)(Ck) = Cw)-

Proof. Let n be the cardinality of the set K, then we can suppose that K = Z/nZ.
Since R is ergodic and all the C}’s have the same measure, by Proposition there
is a pre-n-cycle ® = {p1,...,on_1} such that for all i € {1,....n — 1}, we have
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0i(Ci—1) = C;. Let Ty € [R] be the associated n-cycle. Given A € A, we then define
t(\) by:
t(\)(z) = Tp**(2) where k € K is such that z € Cy.

Note that ¢()\) is well defined because T" = idx. It is then straightforward to check
that ¢ is a homomorphism satisfying the required assumptions. O

Theorem 4.5. Let I' be a countable group. Consider a measure-preserving highly
faithful ergodic T'-action on (X, p) and let A be a residually finite countable group.
Let (F,) be an increasing exhaustive family of finite subsets (F,) of ' such that
1 € Fy, let (A,) be a sequence of positive measure subsets (A,) of X such that
(fAL) rer, nen 1S disjomﬂ. Fiz an asymptotically free sequence (X, G, Om)men of
A-actions on finite pointed sets.

Then there ezists a measure-preserving A-action on (X, ) which preserves the
['-orbits such that the following assertions are true.

(1) The induced " x* A-action is highly faithful.
2) The A-action is supported on fA, and has only finite orbits.
feF, neN

(3) For allx € X, either x is fivzed by A or there exists n € N such that the A-action
on the A-orbit of x is conjugate to «,.

(4) Any A-action which coincides with this action when restricted to | |;cp o fAn
will induce a highly faithful I" x A-action.

Proof. Let (G,)nen be an increasing exhaustive sequence of finite subsets of A such

that 1 € Go. For all n € N, let G/, := G, \ {1} and F] = F,,\ {1}. For all n € N
and k € {0, ...,n}, define the following finite subsets of I' x A:

Iy = (G )G F,) -+ (G F;) G and

k times

R /
i = F g,

where by convention Iy, = Gy,

Then let H, = U;_o(Ixn U Jkn). The sequence (H,) is clearly an increasing
exhaustive sequence of finite subsets of I x A.

We will define the A-action piece by piece, so that for every n € N, the set
U rer, JAn is A-invariant and A,, witnesses the fact that the I' x A-action is highly
faithful for the finite set H, in the following sense: there is a smaller A/, C A,, such
that the collection (hA!)nen, is made of disjoint sets.

So let us fix n € N. Since the sequence of pointed A-actions (X, m, 0m)men
is asymptotically free, by Lemma [£.2] we find m € N such that for all distinct
AN € Iy, we have ay,(A)(0m) # am(N)(0m). Let ky, be the cardinality of the set

Xn; we may as well assume that X, = {0,...,k,, — 1} and o,, = 0. We also fix a
p(An)
km Hn‘ !

Since €, < ’Iz(Lrl) we can find disjoint subsets Cf,...,C, 1 C A, of measure ¢,
which are all disjoint from A}, and we let C := A!,.

subset A/, of A,, of measure ¢,, where €, is a fixed positive real such that €, <

6Such a sequence exists by Theorem
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We define the A-action on Uzza 'C, via a chosen homomorphism ¢ : A —
[RrUkexm o] provided by Lemma applied to the A-action «,, on X,,, where
R is the measure-preserving equivalence relation induced by the I-action on (X, ).
Recall that A, = Cy. Since A(Cy) = Ca,,)(0); We see that by construction the
family (A(A},))xer,, is made of disjoint subsets of A,. Moreover, since the family
(f(An))fer, is made of disjoint sets, we see that the equality Jy,, = F) 1y, yields
that the family (h(A},))rer, 0., is made of disjoint sets.

The above setup initializes the following construction for [ = 0: inductively on
[ €{0,...,n} we will now define the A-action on bigger and bigger sets. So suppose
that for some [ € {0,...,n — 1}, we have constructed a A-action on

|| wanyu || maAy
heUj—o Ik.n helUiZ Jin

satisfying the following assumptions

(a) the A-action is conjugate to «,, when restricted to any orbit,
(b) the A-action preserves the I'-orbits and

(¢;) for any k <[ and any h € I, the set h(A]) is a subset of A,,.

Since the family (f(A,))fer, is made of disjoint sets, condition (c) and the fact
that (h(A})) heUl_, I, 18 disjoint implies that the family

(h( ;))hGUL:O ']k,n

is actually made of disjoint sets which are all disjoint from A,,. Let us fix a family

(Chk) kel km—1},hedr 0

of disjoint subsets of A,, of measure ¢, such that they are also disjoint from the set

LthUZ:o Ton h(Al) (here we fully use the condition ¢, < k’ﬁﬁj‘) For h € J;,,, let

Cho = h(A]). Using again Lemma , we define for every h € J;,, the A-action
on |_|f;"0_1 Ch,; so that it preserves the R-classes, that it is conjugate to o, when
restricted to an orbit and that for all i € {0, ..., ky}, we have A(Ch;) = Ch.a,,(0)(0)-

Now the A-action is also defined on |—|h€Iz . i’:al Chx. And every h € Ij4q, is of

the form h = Ah for some A € G, and h € J;,, so that h(Al) = A(A,) = MN(Cr) =
Cham)(©0)- Since ay, (A)(0) # 0, we see that the family (h(A;l))hGUm) 1, is made of
disjoint subsets of A,,. This implies that the family (h(A.)) heUtH!

=0 Ik,nUJk,n

is disjoint,
so we have now constructed a A-action on

L] o | )

heUtl Ten heUk—o Ji,n

which satisfies conditions (a), (b) and (c;41).

Now for every n € N we have defined the A-action on a subset of | J rer, JAn
and we declare it to be trivial anywhere else. By construction, for every n € N the
family (h(A!))ren, is made of disjoint sets so that the induced I' % A-action is highly
faithful: condition (1) is thus satisfied. Conditions (2), (3) and (4) also follow from
the construction. O

12



5 Topological generators in the hyperfinite case

In this section, we get more flexibility in the construction from [LM15] of topo-
logical generators for the full group of the hyperfinite ergodic measure-preserving
equivalence relation Ry.

5.1 The equivalence relation R,

Recall that R is defined on the space of infinite binary sequences {0, 1} equipped
with the product Bernoulli probability measure @),y %(50 + 61). By definition, two
sequences (x;);eny and (y;)ien are Ro-equivalent if they are the same up to a finite
number of indices, that is, if there is N € N such that for all i > N, we have x; = y;.

Let us now introduce a bit of notation. Any finite binary sequence s € {0,1}"
defines a subset N, of the product space {0,1}" consisting of all the sequences
starting by s, i.e.

Ny :={zc{0,1}V:2;=s; fori e {0,...,n—1}}.

We can see elements a € {0,1}" and b € {0,1}" U, {0, 1}" as words in {0, 1},
and denote their concatenation by a ~ b. For € € {0,1} and n € N, €" is the word
(), € {0,1}" defined by z; = €.

Let n € N. The group &y 13~ is the group of permutations of the set {0,1}".
There is a natural inclusion a;, : G 13» — Gy 13n+1 given by

(o) (g, ooy n) = (0(x0, ooy Tp1), Tp)

for 0 € Syo13n and (o, ..., z,) € {0,1}"". Let Syg13<= be the inductive limit of
these groups, called the group of dyadic permutations.
The key feature of &yg 1<~ is that it acts in a measure-preserving way on

({0,1},X) as follows: for o € &g 13, s € {0,1}" and = € {0, 1}V,
o(s ~x)=0(s) ~x.

It is straightforward to check that the orbit equivalence relation induced by this
action is Ry. To avoid confusion, when we see Sy 13» as a subgroup of [Ry] we
denote it by é{o’l}n.

The following proposition belongs to the folklore, for a proof see [Kecl0, Prop.
3.8].

Proposition 5.1. The group of dyadic permutations is dense in the full group of
Ro.

The odometer is the map Ty € Aut({0, 1}V, \) defined by
(z:)ien € {0, 1} = 0" ~ (23)inn,

where n is the first integer such that x, = 0 (note that this is well defined on a set
of full measure). This can be understood as adding (1, 0,0, ...) to (z;);en with right
carry. One can check that Tj generates Ry.

13



Let n € N, then we define a finite odometer o, € Gy 13» by

ou((5:)150) = { 0" if (s) = 17

05711 ~ (s;)i>k  else, where k is the first integer such that s, = 0.

We denote by T,, the corresponding element in é{(ll}n. Note that by definition, 7},
and Ty coincide on {0, 1}N\ Nya.

5.2 Modified topological generators in the hyperfinite case

Let n > 2, and define 7, € & 1)~ to be the transposition which exchanges 0"~ '1 and
1"710. Let U, be the corresponding element of é{(),l}n, that is, the element of [Ro]
implementing the action of 7,, on 2. Note that the support of U,, is Nyn-11 LI Nqn-10,
so that the supports of the U,’s are all disjoint.

The next lemma boils down to the well-known fact that the symmetric group over
2™ elements is generated by any 2"-cycle ¢ along with a transposition 7 exchanging
two o-consecutive elements. For a detailed proof see [LM15, Lem. 4.3].

Lemma 5.2. The group é{(),l}n s contained in the group generated by Ty and U,.

We see that if we could produce U € [Ry] such that the closed subgroup generated
by U contains infinitely many U,,’s, the fact that é{m}«m is dense [R] coupled with
the previous lemma would yield that Tj and U generate a dense subgroup of [Ro].
Although this cannot be done, the main idea of [LM15] is to find U € [Ro] such that
the closed subgroup generated by U contains infinitely many U,,’s up to an error
which tends very fast to zero, so that {7y, U} generates a dense subgroup of [R].

To this end, we now fix for every n € N a constant x(n) such that any element
of é{()’l}n can be written as a word in U,, and T} of length less than x(n). For all
p,q € N, we will use the function

V- 8({0, 1)) = &({0, 1))

~ op
defined in [LM15], which satisfies that for all U € &({0,1}<>°), one has ( 2%) —

U and */U has the same support as U.
If T'e Aut(X,p) and A is a Borel subset of X which is T-invariant, we define
the induced transformation 74 with respect to A by: for all x € X,

Ty(z) = { T(x) ifreA

T else.

We can now state and prove a version of [LM15, Thm. 1.4] where we allow for some
error. The argument is very close to the original one, but we give a full proof for
the convenience of the reader.

Theorem 5.3. Given any € > 0, there exists an increasing sequence of integers
(ng)ren and a sequence of positive reals (O )ken Such that whenever we have for all
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keNa 2k_wl/Unk -invariant set By, C supp U, with u(By) > p(supp U, ) — O, if we

let
+oo
U:=1] VUnp,
k=0
then the set {Ty, U} generates a dense subgroup of [Ro] and we have p(supp U) < €.

Proof. Fix a sequence (¢x) of positive real numbers such that e, — 0.

Claim. It suffices find sequences (n;) and () with >, 2™ < e such that
whenever we have for all k € N a 27/ Up,,-invariant set B, C suppU,, with
w(Bg) > p(supp Uy, ) — Oy, if we let

—+00
L ok—1
U:=]] Uni p,
k=0

then for all £ € N, there exists U’ € (U) such that d,(U,,,U’) < ex/k(ng).

Proof of the claim. Assuming that the above conditions are satisfied, fix k¥ € N and
U’ € (U) such that dy(U,,,U") < €,/k(ny). Since every element of Gy 13n can be
written as a word in Ty and U, of length less than x(ny) (see Lem. and the
definition of k(ny)), we deduce that every element of é{071}nk belongs to (Ty, U) up to
an error less than ;. Now e, — 0 so the closed group generated by {7y, U} contains
(75{071}@0, hence (T, U) = [Ry] by Proposition . And since for all £ € N we have

p(supp % U”kBk) < u(3/U,,) = 27, we deduce that p(suppU) < 3,y 27 <€
as desired. O

We now build by induction an increasing sequence (ny) such that ), (27™ < ¢
and for all k£ € N, we have

e €k
2 k12 . 1
2k(ng) (1)

Then we choose for every k € N a positive d; such that

€k

2k (ng) 2)

5k<

Let us show that such sequences (ny) and (dy) satisfy the hypotheses of the claim,
which will end the proof. So suppose that for every £ € N we have a Qk_VU_W—
invariant set By, C supp Uy, with u(By) > u(supp U, ) — ;. First note that all the
QVU_M B, have disjoint supports, so they commute. We fix £ € N and compute

2k s 2l 2
vt =] ( Un, Bl)
1=0

k—1 ok~ +00 z ok
R 2
o H (Unle) ' U"kBk ' H ( UMBl)
=0 I=k+1
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Because the U,,’s are involution, the first product is equal to the identity, so that

k = 1 Qk
2
U™ =Unp, - H ( : Unle) ' )
I=k+1
2k
We now check that the error term W, := f:,j 41 < 2 Un, Bz) is small. Because for

2k

every | € N, ( /U ) has same support as Un,, the support of W), has measure

ny B,
smaller than

“+o0o +oo 1
> Nouwpln) € > oo o
I=k+1 I=k+1

Since (n;)ien is increasing, we have for all [ > k + 1,

1
2nl71 < 2nk+1+(l—k‘—2)

—_

We can now bound the right-hand term in and get the inequality

1 X1
psupp Wi) < oot Y 5
l=k+1
_ 4
A DMk+1
€k
<
= 2k(ng)’

the latter inequality being a direct consequence of . From this and equation ((3))
we deduce

Since By is a Uy, -invariant subset of the support of U,,, such that u(By) > p(supp Uy, )—
0 , we have du(UnkBk7 Up,) < 0 < % by . We deduce that

U=,U,,) < )

so that the theorem now follows from the claim. ]
6 Proof of the main theorem

6.1 A lemma on commuting elements

Lemma 6.1. Let T,U € Aut(X, u) have disjoint supports, and suppose that there
are two relatively prime numbers p,q = 2 such that
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e cvery T-orbit is finite and its cardinality divides a power of p and
o cvery U-orbit is finite and its cardinality divides a power of q.

Then both T and U belong to the closure of the group generated by TU for the
uniform topology.

Proof. Since U = T~Y(TU), it suffices to show that T belongs to the closure of
(TU). Let € > 0, find N € N large enough so that there is a Borel set A such that
p(A) > 1— € and for all x € A;

|Orby(z)| < pV and |Orby(2)| < ¢V

Since p" and ¢V are relatively prime, there is [ € N such that g™ = 1 mod p".
Note that 7" and U commute since they have disjoint support and fix x € A.
If = belongs to the support of T’ then (TU)4" (z) = T%" (z) = T(x) because the
cardinality of the T-orbit of = divides a power of p no greater than p’¥ and lg" =1
mod pV. If z belongs to the support of U then (TU)4" (z) = U%" (z) = 2 because
the cardinality of the U-orbit of x divides a power of ¢ no greater than ¢”, so
(TUY" (x) = T(x). And if z neither belongs to the support of 7 nor to the support
of U, then (TU)"" (z) = x = T(x). So for all x € A, we have (TU)"" (z) = T(z).
As p(A) > 1—e, we deduce that d,((TU)"",T) < e and we conclude that T belongs
to the closure of (T'U). O

A proof by induction yields the following useful corollary.

Corollary 6.2. Let Ty, .., T, € Aut(X, 1) have disjoint supports, and suppose that
there are n pairwise relatively prime numbers pq,...,p, = 2 such that for every
ke {1,...,n}, every Ty-orbit is finite and its cardinality divides a power of py.

Then for all k € {1,...,n}, T} belongs to the closure of the group generated by
the product T\15 - -- T, for the uniform topology.

6.2 Proof of Theorem [1.12

Let us start with an ergodic equivalence relation R such that Cost(R) < m + 1 for
some m € N. Our goal is to find m + 1 topological generators for the full group of R
so that the induced F,,, -action is highly faithful and amenable onto almost every
orbit.

By [Dye59, Thm. 4]|j, we may and do assume that X = {0, 1}" equipped with the
product Bernoulli probability measure p = ), %(50 +61), and that the odometer
Ty belongs to the full group of R.

Lemma IIL.5 in [Gab00] provides a graphing ® such that Cost(®) < m and

{To} U ® generates R. Let
Cost(P)
c=—=<1,
m
and fix some odd p € N such that (7%2)0 < 1. Splitting the domains of the partial

automorphisms in ®, we find ®4,...,9,, of cost ¢ such that  =d, U--- U P,,.

"See also [Zim84), 9.3.2] for a statement and a proof with a less operator-algebraic flavour.
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The map T} induces a free (in particular highly faithful) ergodic Z-action, so we
apply item (5) of Theorem [3.5|and find a sequence (A,,),en of non-null Borel subsets
of X such that the family (7¢(A;))ij<nnen is disjoint. Up to taking smaller non-null
subsets A), C A, for all n € N, we can assume that p(| |, L7 _, Ta(A4n)) < e

1—(M)c

Let € := 5> using Theorem we fix an increasing sequence of integers

(nk)ren and a sequence of positive reals (0x)reny such that whenever we have for all
k€ Na *7/U, -invariant set By, C supp U, with u(By.) > p(supp U, ) — 0, if we

let
—+o00
k
U= H VUi g,
k=0

then the set {7y, U} generates a dense subgroup of [Ry] and we have p(suppU) < e,
where Ry is the measure-preserving equivalence generated by 7.

Claim. We can also assume that for all k£ € N,

1 <<|_| |i| Tg(An)> ﬁsuppUnk> < %

neNi=-n
Proof. Let n € N. Find [ € N such that the set {J,., U} _,, T; (supp Uy, ) has measure
less than p(A,)/2, and set A), == A, \ U, Ui—_, T¢(supp Uy, ) which is non-null.

i=—n

Then by construction for all k > [, the set | | Ti(A}) is disjoint from supp U, .
We now take A7 C A’ non-null such that for all k£ <,

" 3 " 5
It < | | TS(An)) < 2,“—],;2

=—n

Then for all k,n € N, we have

" 3 " 5
f ( || T5(A7) Nsupp Unk) < 2k+—:+2

i=—n

But now a straightforward calculation yields that for all £ € N

u <(|_| |i| Té(%)) ﬂsuppUnk) < S—IZ

neNi=—n
so the sequence (A”) is as desired. O
For all k € N, let
2kt . n
B = U 2/ Unkj (supp Up, N <|_| |_| Tg(A,J))
7=0 neNi=—n

Since Qf/Unk has order 2571, the set By is %/ U,,-invariant. Moreover by the previ-
ous claim u(By) < 6. We let By := supp U, \ By, and then we define

+oo
- 2k
U:=[] VU,
k=0

18



By construction, the set {7y, U} generates a dense subgroup of [Ry] and we have
p(suppU) < e.

We now let B := (| ],y L, Tu(A,)) UsuppU. Note that by construction
u(B) <1-— 1%20. Let Dy, ..., Dyyo be pairwise disjoint subsets of X \ B, of measure
= each. For all i € {1,...,m} we use Proposition to pre- and post-compose the
partial isomorphisms of ®; by elements in [[Ro]] so that each ®; becomes a pre-
(p+1)-cycle ®; = {¢}, ¢5, ..., 0} where @} - D; — Djy for all j € {1,...,p}. Note
that this operation preserves the fact that R is generated by {Tp} U P U --- U P,,.

Now choose 9 € [[Ro]] with domain D,; and range D,., and add it to every
®;. We get m pre-(p+2)-cycles &; = ®;U{¢}, and {T}Ud,U- - -UD,, still generates
R. Consider the associated (p + 2)-cycles Cg .

Claim. The m+2 elements Tp, U, Cy , ..., Cg  generate a dense subgroup of the full
group of R.

Proof. Let G be the closed group generated by {1, U, Cy,, ..., Cg, }. Recall that Ty
and U have been chosen so that they generate together a dense subgroup of [Ry],
so G contains [Ry].

Because v is a partial isomorphism of Ry, we have [Ryy| C [Ro] € G. Since
for all i € {1,...,m} we have 1) € ®; and Cs, € G, Proposition implies that G
contains [Rg |. But R is the join of Ry, R4, ..., Rg,, so by Theorem we are
done.

For each n € N, let A], and A] be two non-null disjoint subsets of A,, such that
A, = Al UA”. Let g € N be an odd prime number which does not divide p+ 2. By
[Hal50], the group F,, is a residually ¢-finite group, so we can find an asymptotically
free sequence of pointed F,,-actions (X, ay,,0,) such that for all n € N and all
A € F,,,, the permutation a,,(\) has order ¢* for some k € N.

Let A =[], To(AL). We now apply Theorem [4.5/to I' = Z through the
action induced by Ty, A = F,,, the sequence of actions (X,,, ay, 0,) and the sequence
of sets (A])) such that the sequence (Tj(A!))" _, is made of disjoint sets. We thus
obtain a [F,,-action supported on A which preserves the R-classes and satisfies the
following conditions.

(1) The induced Z * [F,,-action is highly faithful.
(2) The FF,,-action is supported on A and has only finite orbits.

(3) For all x € X, there exists n € N such that the [F,,-action on the F,,-orbit of z
is conjugate to au,.

(4) Any F,,-action whose restriction to A coincides with this action will induce a
highly faithful Z * [F,,-action.

The F,,-action we just obtained is determined by the elements of the full group
induced by its standard generators which we denote by V4, ..., V,, € [R].

By our hypothesis on the sequence of actions on finite sets («,), for all i €
{1,...,m}, every V;-orbit has cardinality ¢* for some k € N. Moreover, we have that
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U, Vi and Cg, have disjoint supports and that for all i € {2,...,m}, V; and Cg_have
disjoint supports.

By corollary , the elements U and Cg, belong to the closure of the group
generated by UViCy , and for all ¢ € {2,...,m}, Cs, belongs to the closure of the
group generated by ViCg . So by the previous claim the group generated by the
m + 1 elements

Ty, UViCs ,VaCls,, ..., Vi G,

is a dense subgroup of the full group of R. Let us show that the associated F,, -
action has all the desired properties.

First, the fact that the m last generators UV1Cg ,V2Cy,, ..., VinCg ~ act trivially
on | ,en LI% ., T6(AY) implies that for almost all € X, the restriction of the
Schreier graph of the [, . ;-action on the orbit of x contains arbitrarily long intervals,
so the I, 1-action is amenable onto almost every orbit.

Then recall that V7,...,V}, induce an F,,-action which satisfies conditions (1)-
(4) above. Moreover, Vi and UV1Cs have the same restriction to A and for all
i€{2,...,m}, V; and ViCg, have the same restriction to A. By , this implies that
that the Z x F,,, = F,,,,1-action that we have built is highly faithful, which ends the
proof of Theorem [1.12]
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