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GROUPS
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ABSTRACT. For profinite branch groups, we first demonstrate the equivalence
of the Bergman property, uncountable cofinality, Cayley boundedness, the
countable index property, and the condition that every non-trivial normal sub-
group is open; compact groups enjoying the last condition are called strongly
just infinite. For strongly just infinite profinite branch groups with mild addi-
tional assumptions, we verify the invariant automatic continuity property and
the locally compact automatic continuity property. Examples are then pre-
sented, including the profinite completion of the first Grigorchuk group. As an
application, we show that many Burger-Mozes universal simple groups enjoy
several automatic continuity properties.

1. INTRODUCTION

Given a Polish groupﬂ it is natural to study the extent to which topological
properties are determined by the group’s algebraic structure. A common approach
is to study automatic continuity properties: For a Polish group G and some inter-
esting class of topological groups H, one asks if every homomorphism ¢ : G — H
with H € H is continuous. Such questions explore the connection between algebraic
and topological structure since homomorphisms from a Polish group must respect
algebraic structure, but they do not necessarily respect the topology.

In the setting of non-locally compact Polish groups, there are now many groups
known to enjoy the automatic continuity property, namely that every homo-
morphism into any Polish group is continuous; we refer the reader to the survey
by C. Rosendal [25] for further discussion. For non-discrete locally compact Polish
groups, however, much less is known. Indeed, the following fundamental question
remains open:

Question 1.1 (Rosendal, [24]). Is there a non-discrete locally compact Polish group
which has the automatic continuity property?

In the work at hand, we study automatic continuity properties for profinite
branch groups. Our results fall just short of answering Question [I.I] positively;
specifically, we obtain the weak Steinhaus property. Nonetheless, we do elucidate
an interesting characterization of those groups which enjoy various weaker auto-
matic continuity properties. Moreover, we connect these properties to combinato-
rial boundedness conditions; the strongest of these being the Bergman property.

2A Polish group is a separable topological group whose topology admits a compatible com-
plete metric.
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1.1. Statement of results.

Definition 1.2 (See Section [2.4]). A profinite branch group is a closed spheri-
cally transitive subgroup of the automorphism group of a rooted locally finite tree
such that every rigid level stabilizer is an open subgroup.

Profinite branch groups form a rich, interesting class of compact Polish groups; an
introduction to these groups and their structure can be found in [13].

A profinite group is strongly just infinite if every non-trivial normal subgroup
is open. A straightforward adaption of an argument due to R. I. Grigorchuk, cf.
[13, Theorem 4|, gives a characterization of strongly just infinite profinite branch
groups.

Proposition 1.3 (See Theorem . Suppose that G < Aut(T,) is a profinite
branch group. Then the following are equivalent:

(1) G is strongly just infinite.
(2) For every vertex v € Ty, the derived subgroup of ristg(v) is open in ristg(v).
(3) For every level n > 1, the derived subgroup of ristg(n) is open.

The celebrated work of N. Nikolov and D. Segal [21] along with the previous
proposition imply that all just infinite topologically finitely generated profinite
branch groups are strongly just infinite.

Our main result establishes for profinite branch groups an equivalence between
being strongly just infinite, automatic continuity properties, and combinatorial
boundedness conditions.

Theorem 1.4 (See Theorem . Let G be a profinite branch group. Then the
following are equivalent:

(1) G is strongly just infinite.

(2) Every commensurated subgroup of G is either finite or open.
(8) G has the normal countable index property.

(4) G has the countable index property.

(5) G has the weak Steinhaus property.

(6) G has uncountable cofinality.

(7) G is Cayley-Bounded.

(8) G has property (FA).

(9) G has the Bergman property.

Remark 1.5. Infinite products of non-abelian finite simple groups are known to
satisfy a similar characterization; see [27] 28].

Examples of groups satisfying the equivalent conditions of Theorem [I.4] include
many iterated wreath products as well as the profinite completion of the Grigorchuk
group. (See Section [7})

Under slightly stronger hypotheses, we obtain additional automatic continuity
properties.

Theorem 1.6 (See Theorem . If G is a strongly just infinite profinite branch
group which locally has derangements and has uniform commutator widths, then G
enjoys the equivalent properties of Theorem[I]), the invariant automatic automatic
continuity property, and the locally compact automatic continuity property.
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We go on to observe that profinite branch groups have a unique Polish group
topology. Additionally, strongly just infinite branch groups admit exactly two lo-
cally compact group topologies: their profinite topology and the discrete topology.
(See Section [6])

Our study of profinite branch groups concludes by considering applications of
our results. We give the first examples of non-discrete compactly generated lo-
cally compact Polish groups that are simple and enjoy the automatic continuity
properties discussed herein.

Theorem 1.7 (See Theorem . Suppose that F' < &g is non-trivial, perfect,
and two transitive. Suppose further the point stabilizers of F' are also perfect. The
Burger—Mozes universal simple group U(F)T then enjoys the countable index prop-
erty, the invariant automatic continuity property, and the locally compact automatic
continuity property.

The commensurated subgroups of these Burger—-Mozes groups are additionally
classified. Classifying commensurated subgroups gives information on the possible
homomorphisms into totally disconnected locally compact groups, see [22]; a com-
pelling example of such a classification is the work of Y. Shalom and G. Willis on
commensurated subgroups of arithmetic groups [26].

Theorem 1.8 (see Theorem. Suppose that F' < &4 is non-trivial, perfect, and
two transitive. Suppose further the point stabilizers of F are also perfect. Then
every commensurated subgroup of U(F)T is either finite, compact and open, or
equal to U(F)*.

The alternating group Ag for any d > 6 is an example of a finite group F' that
satisfies the hypotheses of the above theorems.
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2. PRELIMINARIES

For a topological group G, the commutator of g,h € G is [g,h] := ghg~th™L.
The set of commutators of G is [G,G] := {[g, ] | g, h € G}. We put

[GvG}*n = {[glvhl] cee [gmhn] | gishi € G}

The derived subgroup of G is D(G) := (|G, G]); in general this subgroup is not
closed, hence we occasionally add the modifier “abstract” to call attention to this
point.

The symmetric group on a set X is denoted &(X). For all d € N, we let [d]
denote the set {0,...,d — 1} and set &4 := &([d]).
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2.1. Generalities on groups. We shall require a lemma likely well-known to
mathematicians more familiar with the theory of uncountable abelian groups; we
include a proof for completeness.

Lemma 2.1. If A is an uncountable abelian group, then A has an infinitely gen-
erated countable quotient.

Proof. Let Tor(A) be the torsion subgroup of A and form A := A/Tor(A). Suppose
first A is uncountable, so A is an uncountable torsion free abelian group. The ex-
tension of scalars A®7Q is an uncountable Q-vector space, and there is a canonical
injection A Ay Q, since A is torsion free. We may find {a; ® 1};ey with a; € A
linearly independent vectors in A ®7 Q. We then have a projection

A®;Q — span({a; ®1|i € N}) = V.

The composition A —+ A —+ A ®; Q — V has a countably infinite image that is
infinitely generated, verifying the lemma in this case.

If A/Tor(A) is countable, then it suffices to find a countable quotient of Tor(A)
that is infinitely generated; we thus assume A = Tor(A). By [12, Theorem 8.4], we
have a decomposition A = EBP prime A, where A, are abelian p-groups, and since
A is uncountable, there is a prime p so that A, is uncountable. We may thus also
assume A is an uncountable p-group.

Appealing to [12, Theorem 32.3], there is B < A so that B is a direct sum of
cyclic p-groups and A/B is divisible. Suppose first A/B is non-trivial. Divisible
abelian groups are direct sums of copies of Q and Priifer p-groups via [12, Theorem
23.1], and both of these are countably generated. Projecting onto one of these
summands, we obtain a countable quotient of A which is infinity generated. If
A/B is trivial, then A is an uncountable direct sum of cyclic p-groups. Projecting
onto a countable direct sum gives the desired countable quotient which is infinitely
generated. The lemma is thus verified. (I

For a group G, define the function [ : D(G) — Z by

n

I(g) == min{n | g = [ [ (R, ki }-

i=1
The commutator width of G is then cw(G) := I[(D(G)).

For profinite groups, we note a useful sufficient condition for finite commutator
width.

Lemma 2.2 (Hartley, [14, Lemma 1]). If G is a profinite group so that D(G) is
open in G, then cw(G) < oo.

Lastly, a topological group is called just infinite if all its non-trivial closed
normal subgroups are of finite index. Discarding the topology, we arrive at the
central notion of the current work.

Definition 2.3. A topological group G is called strongly just infinite if every
nontrivial normal subgroup is open with finite index.

2.2. Combinatorial boundedness conditions. Our work primarily considers
three boundedness conditions.

Definition 2.4. Let G be a group.



ON STRONGLY JUST INFINITE PROFINITE BRANCH GROUPS 5

(i) G has the Bergman property if every G-action by isometries on a metric
space has bounded orbits.

(ii) G has uncountable cofinality if there is no increasing chain (G, )nen of
proper subgroups of G such that | J, .y Gn = G. Otherwise, G has countable
cofinality.

(iii) G is Cayley bounded if for any symmetric generating set U containing 1,
there is n > 1 so that U™ = GG. Equivalently, every Cayley graph for G has
finite diameter.

The Bergman property admits a useful algebraic reformulation.

Definition 2.5. A sequence (4, )nen of subsets of a group G is called a Bergman
sequence if it is increasing, each of its elements is symmetric, 1 € Ap, and

Unen 4n =G.

Theorem 2.6 (Cornulier, cf. [9 Proposition 2.7]). Let G be a group. The following
assertions are equivalent.

(1) G has the Bergman property.

(2) If (An)nen is a Bergman sequence such that A, A, C Apyq for alln € N, then
there exists k € N such that A = G.

(3) If (A, )nen is a Bergman sequence, then there exists k,n € N such that A = G.

The Bergman property is related to uncountable cofinality and Cayley bound-
edness as follows:

Proposition 2.7 (Cornulier, [9, Proposition 2.4]). A group G has the Bergman
property if and only if it has uncountable cofinality and is Cayley bounded

We also require a sufficient condition to be non-Cayley bounded, due to A. Khelif.
Here we reproduce his unpublished proofs with his kind permission. In his work
[I7], his terminology differs from ours: what he calls “Bergman’s property” is for us
“Cayley boundedness.”

Theorem 2.8 (Khelif, [I7, Théoréme 10]). If T is a countable infinite subgroup of
a compact group G, then T' is not Cayley bounded.

Proof. (Khelif) First note that we may assume G is metrizable: By the Peter-
Weyl Theorem, for each « € I there is a finite dimensional unitary representation
my : G = U(C™) such that m(y) # 1, so I embeds into the compact metrizable
group H,Yerl/l (C™). Furthermore, by taking the closure of I' in G, we may assume
that I is dense in G. Fix a compatible right-invariant metric d on G.

Enumerate I' = {v,, | n € N} and for all n € Nlet '), := (y0,...,7). Consider
the sequence of continuous functions f, : G — [0, +oo| given by

fn(g) = d(rnag> = ’yienl'f‘.n d(,}/vg)-

This sequence of functions decreases pointwise to zero, so by Dini’s theorem, they
converge uniformly to zero. We can thus find a sequence (u,,)nen such that u,, € T',
and d(uy,yn+1) tends to zero.

Set S := {1,7%} U {yms1u,’ | n € N} and let U := SUS™L. The set U is a
symmetric generating set for I' which contains 1, and since v, 11u, ! — 1, the set
U is also a compact subset of G. If I is Cayley bounded, we can find & € N such
that I' = U*. In particular, I is then compact, but by the Baire category theorem,
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there is no countable infinite compact group. We thus deduce that I' is not Cayley
bounded. O

Corollary 2.9 ([I7, Corollaire 11|). If G is an infinite solvable-by-finite group,
then G is not Cayley bounded.

Proof. (Khelif) Let H be a finite index normal subgroup of G such that H is solvable
and consider the derived series H™*Y) := D(H™) where H®) := H. Let n be the
smallest integer such that H/H™ is infinite. Since H™~1/H ™) is abelian, the
quotient group G/H (™ is infinite and abelian-by-finite. It thus suffices to show
that no infinite abelian-by-finite group is Cayley bounded, so we assume G has a
finite index normal subgroup N which is abelian.

By Lemma 2.1} the group N has a subgroup B < N with countable index. Let-
ting 1, ...,z be coset representatives for IV in G, the subgroup L := ﬂle min;1
is a normal subgroup of G so that G/ L is a countably infinite abelian-by-finite group.
Passing to G/ L, we may also assume G is countable.

Since N is abelian, Pontryagin duality gives a morphism ¢ : N — K with
countable infinite image where K is a compact group. Taking coset representatives
x1,...,x, for N in G, define p: N — K* by

h (Y(wrhat),. .. d(zpha ).
The action of G on N by conjugation induces an action of G on p(N) by defining

g-p(h) := p(ghg™").
For each g € G and h € N, it follows there is 0 € G(k) so that

g-(Y(xrhay ), .. (aphet)) = (¢(xa(1)hx;(11)), e ,w(xg(k)hx;(lk)))

Each element g € G thus acts on p(IN) by permuting coordinates. Such an action

extends to an action on p(N) by continuous automorphisms.

Under this action, the group p(IN) x G is a locally compact group. A straight-
forward calculation shows the subset {(p(h),h™!) | h € N} is a discrete normal
subgroup of p(IN) x G. The quotient is furthermore a compact group into which G

embeds. The desired conclusion now follows via Theorem [2.8] O

We lastly note that any quotient of a Cayley bounded group is again Cayley
bounded.

2.3. Automatic continuity properties.

Definition 2.10. A topological group is Polish if the underlying topology is sep-
arable and admits a compatible, complete metric. A Polish group is called non-
archimedean if the topology admits a basis at 1 of open subgroups.

The automatic continuity properties of primary interest have a useful algebraic
description.

Definition 2.11. Let G be a Polish group.

(i) The group G has the normal countable index property if every countable
index normal subgroup of G is open.

(ii) The group G has the countable index property if every countable index
subgroup of G is open.

Lemma 2.12. Let G be a Polish group.
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(1) The group G has the normal countable index property if and only if every ho-
momorphism ¢ : G — H with H a countable discrete group is continuous.

(2) The group G has the countable index property if and only if every homomor-
phism ¢ : G — H with H a non-archimedean Polish group is continuous.

Proof. The first claim is immediate, so we prove the second. Suppose first G has
the countable index property and ¢ : G — H is a homomorphism with H a non-
archimedean Polish group. Taking O < H an open subgroup of H, the index of
O is countable, since H is second countable. Hence, 1~1(O) is a countable index
subgroup of G. That G has the countable index property now ensures ¥~1(0) is
open, and we deduce that v is continuous.

Conversely, suppose G is so that every homomorphism v : G — H is continuous
where H is a non-archimedean Polish group. Take O < G a countable index
subgroup. The action of G on the left cosets G/O induces a homomorphism o : G —
S(G/0). The group &(G/0) with the topology of pointwise convergence is a non-
archimedean Polish group, hence o is continuous. Furthermore, the collection of
permutations in &(G/0) which fix the coset O, denoted X, form an open subgroup
of &(G/0O). We thus see that o~ 1(X) = O is open in G, whereby G has the
countable index property. O

The countable index property is a weakening of the small index property which
states that every subgroup of index less than the continuum is open. The latter
has been studied in the context of automorphism groups of countable structures;
see [10].

Our proofs will require analyzing o-syndetic sets: For a Polish group G, a subset
A C @G is called o-syndetic if there is a sequence (g, )nen of elements of G so that

G = UnEN g"A

Definition 2.13. A Polish group G has the weak Steinhaus property if for any
symmetric o-syndetic set A, there exists n € N such that the set A™ contains a
neighborhood of 1.

Let us collect two technical results concerning o-syndetic sets.

Lemma 2.14 (|29, Lemma 4]). Suppose that G is a group and H is a subgroup
of G. If A is a symmetric o-syndetic set containing 1 for G, then H N A2 is a
symmetric o-syndetic set containing 1 for H.

Lemma 2.15. Suppose G is a group and go,...,9, € G. If A is a symmetric
o-syndetic set containing 1, then ﬂ?:o giAQngi_1 is symmetric o-syndetic set con-
taining 1.

Proof. The fact that ), g;42"g; * is again symmetric and contains 1 is straight-
forward. To see this set is also o-syndetic, one argues via the obvious induction.
This induction comes down to the following claim, which we prove here: If A, B C G
are two o-syndetic symmetric sets containing 1, then the set B2 N A2 is also o-
syndetic.

Let A, B be two o-syndetic symmetric sets containing 1, fix a sequence (hy)ken
so that G = (J;cy hi B and set

K :={keN|h,BnA#0}.
For each k € K, fix ap, € hy BN A and say ag = hibg with b, € B.
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For a € A, there is k € K and b € B so that a = hib, hence a = ak.b,;lb. We
also have a = ajaj 'a, so a € a,(B% N A?). It now follows A C (J,  ar(B? N A?).
Since the set A is o-syndetic, we conclude B? N A? is o-syndetic, completing the
proof. O

2.4. Rooted trees and profinite branch groups. A rooted tree T is a locally
finite tree with a distinguished vertex r called the root. Letting d be the usual
graph metric, the levels of T are the sets V,, := {v € T | d(v,r) = n}. The
children of a vertex v € V,, is collection of w € V,,;1 so that there is an edge from
v to w.

We think of the levels of the tree as linearly ordered so that the orders cohere.
That is to say, if vg < vy in V,, with wg a child of vg and w; a child of vy, then
wo < wy in Vj,41. This ordering allows us to take the right-most branch: the right-
most branch of T is the unique infinite path from the root (v;);en so that v; is
the maximal element of V; for all < € N.

When vertices k and w lie on the same path to the root and d(k,r) < d(w,r), we
write k < w. Given a vertex s € T, the tree below s, denoted T, is the collection
of t so that s < t along with the induced graph structure.

Level 0

Level 1,7

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

,

The tree below s

|
Th:? rightmost branch of 7 The children of v.
|

FIGURE 1. Levels, children, and trees below vertices

We call a rooted tree spherically homogeneous if all v, w € V,, the number of
children of v is the same as the number of children of w. A spherically homogeneous
tree is completely determined by specifying the number of children of the vertices
at each level. These data are given by an infinite sequence a € NN so that (i) > 2
for all 7 € N; the condition a(i) > 2 ensures non-triviality. We denote a spherically
homogeneous tree by T, for a € N§2' When a = d, we write Ty. The group of
rooted tree automorphisms, denoted Aut(7Ty,), is naturally a profinite group.

Profinite branch groups are certain closed subgroups of Aut(Ty,); our approach to
branch groups follows closely Grigorchuk’s presentation in [I3]. For G < Aut(7T,) a
closed subgroup and for a vertex v € T, the rigid stabilizer of v in G is defined
to be

ristg(v) :={g € G|gw=w forall w € T, \ T2 }.

The rigid stabilizer acts non-trivially only on the subtree T7..
The n-th rigid level stabilizer in G is defined to be

ristg(n) = (ristg(v) | v € V).
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It is easy to see that ristg(n) =~ [, ¢y, riste(v), and as a consequence, ristg(n) is
a closed subgroup of G.

For a level n, we denote the pointwise stabilizer in G of V,, by stg(n). The
subgroup stg(n) is called the n-th level stabilizer of G. Observe that it can be
the case that ristg(n) < stg(n), even for profinite branch groups.

Definition 2.16. A profinite group G is said to be a profinite branch group if
there is a tree T, for some a € N§2 so that the following hold:

(i) G is isomorphic to a closed subgroup of Aut(Ty,).
(ii) G acts transitively on each level of T,.
(iii) For each level n, the index |G : ristg(n)| is finite.

We shall always identify a profinite branch group G with the isomorphic closed
subgroup of Aut(7,).

The rigid level stabilizers form a basis at 1 for the topology on a profinite branch
group G. The transitivity of the action on the levels ensures that ristg(v) =~
ristg(w) for all v,w € V,,. The transitivity further insures that profinite branch
groups are always infinite.

Lemma 2.17. Suppose that G < Aut(T,) is a profinite branch group and v € T,.
Then each g € Cq(ristg(v)) fizes pointwise T2 . In particular, the center of ristg(v)
is trivial for all v € T,.

Proof. Fix v € T, and suppose for contradiction there is w > v so that g.w # w.
The subgroup ristg(w) is non-trivial since G is infinite, so we may find y € ristg(w)
and u > w with y.u # u. The element gy then sends u to ¢.(y.u), but the element
yg sends u to g.u. Hence, gy # yg contradicting that g centralizes ristg(v). O

As an immediate corollary, we obtain a description of ristg(v).

Lemma 2.18. Suppose G < Aut(Ty,) is a profinite branch group. If v € Ty is at
level n, then
ristg (v) = ﬂ Ce(ristg(w)).

weVn\{v}
3. COMMUTATORS AND DIAGONALIZATION IN BRANCH GROUPS

3.1. The commutator trick. The following lemma is well-known and dates back
to the fifties, where it was used by G. Higman [I5] to show the simplicity of various
permutation groups. It has since become a cornerstone to proofs that various groups
are simple.

The support of a permutation o € &(X) is the set

supp(o) :={z € X : o(z) # =}.
Lemma 3.1. Let X be a set and let G < &(X) be a permutation group with T € G.

If 01,09 € G are so that T(supp(o1)) is disjoint from supp(o1)Usupp(os), then the
commutator (o1, 09 is the product of four conjugates of 7! by elements of G.

Proof. Whenever two permutations have disjoint support, they commute. More-
over,

7(suppo1) = supp(ro17 1Y),
so by our hypothesis, 7o017~! commutes with both oy and oy. It follows 7o, ‘71
also commutes with both o7 and os.
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Setting o := [01,7] = o1(Toy 77 1), the fact that 7o '7~! commutes with both
o1 and o9 yields that [01, 03] = [01, 02]. The permutation 64 = (0170171)7*1 is the
product of two conjugates of 7%! by elements of the group G. Hence, [71, 03] is the
product of four conjugates of 7! by elements of G, verifying the lemma. O

We now adapt Grigorchuk’s argument [I3] Theorem 4] to characterize strongly
just infinite profinite branch groups.

Theorem 3.2. Suppose that G < Aut(T,) is a profinite branch group. Then the
following are equivalent:

(1) G is strongly just infinite;

(2) For all v € T,, the abstract derived subgroup D(ristg(v)) is open in ristg(v).
(8) For all n > 1, the abstract derived subgroup D(ristg(n)) is open in G.

Proof. For (1) = (2), we prove the contrapositive. Suppose for some v € T,
the abstract commutator D(ristg(v)) is not open in ristg(v); Lemma ensures
D(ristg(v)) is also non-trivial. Letting n be the level of v, we have D(ristg(n)) =
[luev, D(ristg(w)) is a characteristic subgroup of ristg(n) which is non-trivial and
not open. Since ristg(n) is a normal subgroup of G, we deduce that G has a non-
trivial normal subgroup which is not open, hence G is not strongly just infinite.

The implication (2) = (3) is immediate.

For (3) = (1), let H be a non-trivial normal subgroup of G and let 7 € H \ {1}.
There exists a vertex v such that 7(v) # v; let n be its level. Taking two elements
01,09 in ristg (v), their support is a subset of T2, and since 7(T?) = T2 is disjoint
from T, we apply the commutator trick and deduce that the commutator [o7, 09]
is the product of four conjugates of 71,

The commutator group D(ristg(v)) is thus a subgroup of H. Since H is normal
and G acts spherically transitively on Ty, it follows the open subgroup

D(ristg(n)) = [ D(ista(w))
weVp
is a subgroup of H, hence H is open. O

The next lemma establishes a version of the commutator trick for certain large
sets.

Definition 3.3. For G < Aut(T,,), we call a subset A of G full above the vertex
v € T, if every element of riste(v) coincides with an element of A restricted to T7.

For a group G with ristg(v) = {1}, any set containing 1 is full above v. In profinite
branch groups, however, rigid stabilizers are necessarily infinite, so this trivial case
never occurs.

The relevance of this definition stems from the following observation.

Lemma 3.4. Suppose that G < Aut(T,) is a strongly just infinite profinite branch
group and that A C G is full above v. If ANristg(v) € {1}, then there is w > v so
that D(ristg(w)) < AF with k = cw(ristg(w)).

Proof. Take x € ANristg(v) \ {1} and find w > v so that z.w # w. We now
consider g, h € ristg(w). Since A is full above v, there are g, h € A with the same
action on T as g and h, respectively. The element x is supported on ristg(v),
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so ha~'h~' = ha~'h~!. In particular, [h,z] = [h,z]. The element [h, z] is again
supported on T, so we have that [g, [h, z]] = [g, [, x]].

Now xh~tx~! commutes with both h and g since supp(zh~12z~!) C T=¥, so we
further have that [g, h] = [g, [h, z]]. Therefore,

9. 8] = lg, [h, a]] = 3, [h, 2] = (3. [h, ),
and we deduce that [g, h] € A1°.

The set A'° thus contains every commutator of ristg(w). In view of Lemma
Theorem [3.2| implies that k := cw(ristg(w)) is finite, so D(ristg(w)) < A%, O

3.2. The diagonalization trick. We now show we can find full sets under certain
mild conditions. This lemma was already present in the work of J. Dixon, P.
Neumann, and S. Thomas on the small index property for permutation groups [10].

Lemma 3.5. Let G < Aut(T,,) be a closed subgroup and let (Ay)nen be a countable
family of subsets of G such that G = J,,cyy An- Then for any vertex w € T, there
exists a vertex v > w and n € N so that A, is full above v.

Proof. Let (wy,)nen enumerate the vertices of the rightmost branch of . For each
n, let v, be a child of w,, different from w, ;. Let us prove by contradiction there
is some n € N such that A,, is full above v,,; this implies the lemma.

If not, for each n € N there is a tree automorphism g,, € G supported on T2~
such that its restriction to 72" does not extend to an element of A,,. The products
[T}, gi converge to a limit g, and g extends g; for all i. Since G is closed in Aut(T%,),
we have that ¢ € G, but for all n € N, the restriction of g to T does not extend
to an element of A,. We conclude g € A, for any n, contradicting the assertion

Unen 4n =G. O
Sets which are o-syndetic are natural sources of sets full above a vertex.

Lemma 3.6. Let G < Aut(T,) be a closed subgroup and let A be a symmetric
o-syndetic subset of G. Then for any w € T,, there exists v > w such that A? is
full above v.

Proof. We many find a sequence (g, )nen of elements of G such that (J,,cy 904 = G.
Lemma [3.5] provides n € N and a vertex v > w such that g, A is full above v. Since
1 € ristg(v), there is a € g, A so that a [7v is the identity. It now follows that
Ag, tgnA = A? is full above v. O

4. STRONGLY JUST INFINITE PROFINITE BRANCH GROUPS

4.1. Combinatorial boundedness conditions. Our characterization of profinite
branch groups with boundedness conditions requires a general observation.

Lemma 4.1. If G is a profinite group with uncountable cofinality, then the derived
group D(O) is open for every open normal O < G.

Proof. We prove the contrapositive. Suppose that O < G is open but that D(O) is
not. The subgroup D(O) is then meagre in O, hence the quotient group O/D(O)
is uncountable. Appealing to Lemmal[2.1} we may find D(0) < A < O so that O/A
is countable and infinitely generated.

Taking gg,...,g, left coset representatives for O in G, the subgroup A =
Ny gl-Agi_1 is normal in G, and G/A is countable. The group G/A must be
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infinitely generated since O/ A is a finite index subgroup. Since infinitely gener-
ated countable groups plainly have countable cofinality, we conclude that G has
countable cofinality. O

We note one further boundedness condition, which we will obtain for free from
results in the literature: A group G satisfies property (FA) if whenever G acts
on a tree without edge inversions, then it fixes a vertex.

Theorem 4.2. Let G < Aut(T,) be a profinite branch group. Then the following
are equivalent:

(1) G is strongly just infinite.

(2) G has the Bergman property.

(3) G has uncountable cofinality.

(4) G has property (FA).

(5) G is Cayley bounded.

Proof. For (1) = (2), let (A,)n>0 be a Bergman sequence. Via Lemma there

isng > 0 and v € T, so that A4, is full above v. Appealing to Lemma@, we may

find w > v on some level [ so that D(riste(w)) C AMF for k := cw(riste(w)).
Since G acts transitively on the levels, there are g1,...,g, € G so that

{gl'wa ce agnw} = ‘/la

and that (A,),>0 is a Bergman sequence ensures there is n; > ng for which
1y -y gn € Ap,. It now follows

n

10k —1 10nk+2n
HgiAno g9; €A, .
i=1

We infer D(ristq(l)) < ALOnk+2n,

The set A}0"%2" contains the open subgroup D(ristg({)) of G, which has finite
index. Letting hq,...,h, be left coset representatives for this subgroup, there is
ny = ny so that hy,..., Ay, € A,,. We deduce that ALO"*+2n+1 = @, hence G has
the Bergman property.

The implications (2) = (3) and (2) = (5) are given by Proposition 2.7 H. Bass’
work [3] establishes the equivalence (3) < (4). It thus remains to show (3) = (1)
and (5) = (1). The former is an easy exercise: The contrapositive follows from
Lemma [£J] and Theorem

To show (5) = (1), we prove by contrapositive. Suppose G is not strongly
just infinite. In view of Theorem there is a level k so that D(ristg(k)) is not
open in G. The quotient G/D(ristg(k)) is then an infinite abelian-by-finite group.
Applying Corollary G/D(ristg(k)) is not Cayley bounded, whereby G is not
Cayley bounded. (I

4.2. Automatic continuity properties. We now consider automatic continuity
properties.

Theorem 4.3. Suppose G is a profinite branch group. Then the following are
equivalent:

(1) G is strongly just infinite.

(2) G has the weak Steinhaus property.

(8) G has the countable index property.
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(4) G has the normal countable index property.

Proof. The implications (2) = (3) and (3) = (4) are immediate. The contrapositive
of (4) = (1) follows from Lemma and Theorem

For (1) = (2), suppose G is strongly just infinite and let A C G be a o-syndetic
symmetric set. The set A is then also o-syndetic. Applying the Baire category
theorem, some left translate of A has non-empty interior, so A is dense in some
open set V. Since V™'V is a neighborhood of the identity and A is symmetric,
we deduce that A2 is dense in a neighborhood of the identity. There is thus a
level n € N such that A2 is dense in the pointwise stabilizer of V,,, denoted stg(n).
Fixing a symmetric set of right coset representatives go, ..., g; for stg(n) in G, put
B := mé:o gi_lAQZgi. Via Lemma , B is again a symmetric o-syndetic set.

For v € V,,, we apply Lemma to find w > v so that B2 is full above w. By
Lemma the set B* Nristg(w) is o-syndetic in ristg(w), and since ristg(w) is
uncountable, we have B* Nristg(w) € {1}. Lemma now implies we may find
s > w so that D(ristg(s)) C (B*)!0k = Bk,

Let m be the level of s. The group G acts transitively on V,,, so for all t € V,,,,
there is z € G so that z.s = t. We may write z = xg; for some z € stg(n) and g; one
of the previously fixed right coset representatives. Since A? is dense in stg(n), there
is h € A% so that hg;.s = xg;.s = t. We now have that hg;D(ristg(s))g; *h™! =
D(ristg(t)). Moreover,

hgiD(rist(s))g; "h™" C hgi B0 g Th=! C AR +4,

We conclude that A%%2'+4 contains D(ristg(t)) for all ¢ € V,,,. The open sub-
group D(ristg(m)) is thus contained in A(4Ok21+4)|‘/’"|, whereby G enjoys the weak

Steinhaus property. O

We pause for a moment to observe that the branch assumption in Theorem
is necessary.

Proposition 4.4. For n > 2, the profinite group PSL,(Z,) fails the countable
index property but is strongly just infinite.

Proof. The profinite group PSL,(Z,) is strongly just infinite via the main theorem
of the appendix of [23].

On the other hand, via [I6l Theorem 1], there is an injective homomorphism
€ : GL,(C) - G4. Considered as abstract fields, the algebraic closure of Q,, is
isomorphic to C, hence we may see SL,(Q,) < GL,(C). For each a € Aut(C),
the map ¢, given by applying a to the entries of a matrix is an automorphism of
GL,(C). We therefore obtain maps & 0 ¢4 : SL,(Qp) = S for each o € Aut(C).

For a and § in Aut(C), the maps £ o ¢, and & o ¢g are equal if and only if

Pa [SL,.(Q,)= 98 ISL.(Q,) -

The maps ¢, and ¢g agree on SL,(Q,) if and only if ¢,-1,5 is the identity on
SL,(Qp). The group SL,(Q,) contains elementary matrices E; j(a) for i # j and
a € Qp where E; j(a) has ones on the diagonal, @ in the (i, j)-entry, and zeros
elsewhere. We conclude a~! o 8(a) = a, so a~! o 3 fixes Q, pointwise. Therefore,
£o¢a and £ o ¢ are equal if and only if ™ o 8 € Aut(C/Q,).

It is well-known | Aut(C)| = 2°. On the other hand, Aut(C/Q,) is a second
countable profinite group and thus has size ¢. We conclude there are 2° many dis-
tinct left cosets of Aut(C/Q,) in Aut(C). In view of the previous paragraph, there
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must be 2¢ many distinct homomorphisms £ o ¢, : SL,(Q,) — Soo. Since there
can be at most continuum many continuous homomorphisms, we conclude that
SL,(Qp) fails the countable index property, and as SL,(Z,) is an open subgroup
of SL,(Q,), the group SL,(Z,) also fails the countable index property. It now
follows PSL,(Z,) fails the countable index property. O

4.3. Commensurated subgroups. We finally give a characterization of strongly
just infinite profinite branch groups in terms of commensurated subgroups.

For a group G, subgroups H and K are commensurate, denoted H ~. K, if
|H: HN K| and |K : HN K| are both finite. We say H < G is commensurated
if H~,gHg ' forallgecG.

We shall need an important feature of the commensuration relation.

Theorem 4.5 (Bergman—Lenstra, [4, Theorem 6]). Let G be a group with subgroups
H and K. Then the following are equivalent:

(1) suppep |H - HNEHE | < 0.

(2) There is N normalized by K so that N ~. H.

Via Theorem groups with the Bergman property have strong restrictions on
commensurated subgroups:

Proposition 4.6. If a Polish group G has the Bergman property, then every com-
mensurated subgroup is commensurate to a normal subgroup.

Proof. Suppose C' < G is commensurated. For each n > 1, set
Q,:={9g€CG||C:CngCg'|<nand|gCg':CNgCg ' <n}

The sets €2, are symmetric, and since C' is commensurated, G = Un>1 Q,. For
all n,m > 1, an easy computation further verifies 2,,9,, C Q,,. Since G has the
Bergman property, there is n,k so that Qf = G, whereby Q,» = G. Appealing
to Theorem there is L < G which is commensurate with C, verifying the
proposition. [l

Theorem 4.7. Suppose G < Aut(T,) is a profinite branch group. Then G is
strongly just infinite if and only if every commensurated subgroup of G is either
finite or open.

Proof. Suppose that G is strongly just infinite and that C' < G is a commensu-
rated subgroup. Since G is strongly just infinite, G has the Bergman property via
Theorem [£.2] Proposition [4:6] then supplies D < G so that C' ~. D, and since G
is strongly just infinite, D is either open or trivial. If D is trivial, then C' is finite.
If D is open, then C has finite index in G. That G is strongly just infinite implies
the normal core of C' in G is open, whereby C is open.

Conversely, suppose every commensurated subgroup of G is either finite or open.
Fix a level n of T,. The subgroup D(ristg(n)) is normal in G, so a fortiori, it is
commensurated. Suppose toward a contradiction that D(ristg(n)) is finite. The
subgroups st (k) form a basis at 1 for G, so we may find m > n for which stg(m)N
D(ristg(n)) = {1} and stg(m) < ristg(n).

The group st (m) thus injects into ristg(n)/D(ristg(n)) and therefore is abelian.
For any v € V,,,, the rigid stabilizer ristg(v) then has a non-trivial center, but this
is absurd in view of Lemma We conclude D(ristg(n)) is open for all levels n.
Theorem [3.2] now implies G is strongly just infinite. (]
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Bringing together Theorems [£:2] [1.3] and [I.7] we have established the claimed
equivalences.

Theorem 4.8. Let G < Aut(T,) be a profinite branch group. Then the following
are equivalent:

(1) G is strongly just infinite.

(2) Every commensurated subgroup of G is either finite or open.
(8) G has the normal countable index property.

(4) G has the countable index property.

(5) G has the weak Steinhaus property.

(6) G has uncountable cofinality.

(7) G is Cayley bounded.

(8) G has property (FA).

(9) G has the Bergman property.

5. INVARIANT AND LOCALLY COMPACT AUTOMATIC CONTINUITY PROPERTIES

We now consider two further automatic continuity properties in the setting of
profinite branch groups.

5.1. Preliminaries. A Polish group is called a small invariant neighborhood
group, abbreviated SIN group, if it admits a basis of conjugation invariant neigh-
borhoods at 1. By integrating a compatible left-invariant metric on a compact
metrizable group against the Haar measure, we obtain a two-sided invariant met-
ric, so every compact metrizable group is a SIN group.

Definition 5.1. Let G be a Polish group.

(i) The group G has the invariant automatic continuity property if every
homomorphism v : G — H with H a SIN Polish group is continuous.

(ii) The group G has the locally compact automatic continuity property if
every homomorphism ¢ : G — H with H a locally compact Polish group is
continuous.

The invariant automatic continuity property has an associated Steinhaus prop-
erty. A subset A C G is called invariant if gAg~! = A for all g € G.

Definition 5.2. A Polish group G has the invariant Steinhaus property if
there is N > 0 such that for any symmetric invariant o-syndetic set A, the set AN
contains a neighborhood of 1.

Proposition 5.3 (Dowerk-Thom, [I1]). If a Polish group G has the invariant
Steinhaus property, then G has the invariant automatic continuity property.

Remark 5.4. In [II], Ph. Dowerk and A. Thom show finite-dimensional unitary
groups satisfy the invariant automatic continuity property, but these groups fail the
automatic continuity property by a result of Kallman [16].

For a finite permutation group (F,€2), a derangement of (2 is a permutation
f € F so that f fixes no point in ). It is an easy, amusing exercise to see that every
finite transitive permutation group (F,$) with |©2] > 1 contains a derangement;
this observation is originally due to C. Jordan. Given a derangement f € F', we
may write f as a product of disjoint cycles f =¢;...c,, and each ¢; has length at
least 2.
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Definition 5.5. We say a profinite branch group G < Aut(T,) locally has de-
rangements if for each n > 0 there is N > n for which stg(n) contains a derange-
ment of V.

Groups built by iterated wreath products of transitive permutation groups are easy
examples of branch groups which locally have derangements. Indeed, suppose G <
Aut(T,) is such an iterated wreath product. For each v € V,,, the rigid stabilizer
ristg(v) acts transitively on the children of v in V41, so there is z, € ristg(v) a
derangement of the children of v in V,,;1. The element HveVn I, is then an element
of riste(n) which is a derangement of V;,11. The reader is encouraged to look ahead
to Section [7] to see examples of such constructions.

We remark that we do not know of a profinite branch group which fails to locally
have derangements. As this seems an independently interesting question, we set it
out explicitly:

Question 5.6. Does every (profinite) branch group locally have derangements?

Lastly, let us isolate a class of profinite branch groups with well-behaved com-
mutator widths of rigid stabilizers.

Definition 5.7. A profinite branch group G € Aut(7,) is said to have uniform
commutator widths if sup{cw(ristg(v)) | v € To} = ¢ < co. The value c is called
a uniform bound for the commutator widths.

Examples of profinite branch groups with uniform commutator widths are also
presented in Section [7]

5.2. Automatic continuity results. Let us begin with a general, elementary
lemma.

Lemma 5.8. Let G be a Polish group. If G has the invariant automatic continu-
ity property and the Bergman property, then G has the locally compact automatic
continuity property.

Proof. Let H be a locally compact Polish group and ¢ : G — H a homomorphism.
Since H is locally compact and Polish, it is o-compact, so we may write H =
UneN K, where (K, )nen is an increasing sequence of compact subsets. We may
assume that 1 € Ky and up to replacing K,, by K,, UK, ! we may also assume that
each K, is symmetric.

The sequence (o~ (K,,))nen is a Bergman sequence in G, so there exists k,n € N
such that p~1(K,)* = G. We deduce that »(G) C KF. Thus, ¢(G) has compact
closure, and since compact groups are SIN groups, the conclusion follows from the
invariant automatic continuity property. (]

Proposition 5.9. Suppose G is a profinite branch group which locally has derange-
ments and has uniform commutator widths with uniform bound c. If A C G is an
invariant symmetric o-syndetic set, then D(ristg(k)) < A?*¢ for some level k.

Proof. Since A is o-syndetic, the Baire category theorem implies that A is dense
in some open set V. The set A2 is then dense in the neighborhood of the identity
V~1V. Let n be so that stg(n) is contained in A2

As G locally has derangements, there is k > n and y € stg(n) so that y is a
derangement of V. The set A? is dense in stg(n), whereby we may find 2z € A% so
that z.w = y.w for all w € Vi. Hence, z acts as a derangement on Vj.
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Let the action of z on Vi be given by the product of disjoint cycles c; ... cp,.
This action is a derangement, so each cycle has length at least 2. A cycle ¢ may be
written as a tuple (w;,, ..., w;,_,) of vertices from V}, so that c: Wi, = Wis ) oa s
We may thus choose every other vertex appearing in c¢; that is to say, we take
Wiy, Wi, - .. Let Z list every other vertex from each of the ¢y,..., cp,.

Consider the subgroup H := [[,.,ristg(v). For each h € H, we see that
(z.supp(h)) Nsupp(h) = . Lemma therefore implies that every commutator
[g,t] with g,t € H is a product of four conjugates of z*!. Recalling A is conjugation
invariant, we conclude that [H, H] C A8. Since the derived subgroup of H is
[I,cz D(ristg(v)), the group H has commutator width at most ¢, hence D(H) <
A8,

Since z is a derangement, it follows that 2 'Zz U Z U 2Z2z~! =V}, and as A is
conjugation invariant, we infer that

[l Distaw)u [ Diste(w)) < A%,

wezZz1 wez"1Zz2

Hence, D(ristg(k)) < A%*¢, verifying the proposition. O

Theorem 5.10. If G is a strongly just infinite profinite branch group which locally
has derangements and has uniform commutator widths, then G has the invariant
automatic continuity property.

Proof. In view of Proposition [5.3] it suffices to show that G satisfies the invariant
Steinhaus property.

Let ¢ > 0 be a uniform bound on the commutator widths and suppose A C
G is an invariant o-syndetic subset of G. Proposition ensures A2%¢ contains
D(ristg(n)) for some level n. The group G is strongly just infinite, so D(ristg(n))
is open via Theorem The subset A24¢ therefore contains a neighborhood of 1,
whereby G has the invariant Steinhaus property with constant 24c. [

Corollary 5.11. If G is a strongly just infinite profinite branch group which lo-
cally has derangements and has uniform commutator widths, then G has the locally
compact automatic continuity property.

Proof. By Lemmal5.§ we need only to check that G has the Bergman property and
the invariant automatic continuity property, and these are given by Theorems [£.2]

and [5.101 O

Neither the condition that G is strongly just infinite nor the condition that G
has uniform commutator widths are implied by the other hypotheses. In a private
communication, Nikolov explained to us an example of a profinite branch group
which is strongly just infinite and locally has derangements, but it fails to have
uniform commutator widths.

On the other hand, letting (p;)ien be a sequence of distinct primes, the it-
erated wreath product W(C,,, [p;]), as defined in Section [7] is topologically two
generated via [5, Corollary 3.2] and the discussion thereafter. All rigid stabilizers
are also topologically two generated, so work of Nikolov and Segal [21, Theorem
1.2] implies there is a uniform bound on the commutator widths. Additionally,
W (Cp,, [p:]) locally has derangements as it is built via iterated wreath products.
However, it surjects onto an infinite profinite abelian group, so it is not strongly
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just infinite. Uniform commutator widths and local derangements therefore do not
imply strongly just infinite.

6. RIGIDITY OF THE GROUP TOPOLOGY
We now consider the group topologies a profinite branch group admits.

Theorem 6.1. The profinite topology of a profinite branch group is its unique
Polish group topology as well as its unique compact Hausdorff group topology.

Proof. Suppose G < Aut(T,,) is a profinite branch group and suppose ¢ : G — H
is a bijective homomorphism with H a topological group. For each v € T, with
v € V,, Corollary gives that

Ylrista(v)) =[] U(Calistew)) = [ Cu(@(ista(w))).

weVy\{v} weVy\{v}

As centralizers are always closed, we conclude that ¢ (ristg(v)) is closed in H.

If H is a Polish group, we deduce that the subgroup ¢ (ristg(n)) is analytic, as
it is a finite product of closed sets, so it is Baire measurable for all levels n. The
subgroup t(ristg(n)) is also finite index in H, so via the Baire category theorem,
(ristg(n)) is indeed open. We deduce that the map ¢~ : H — G is continuous,
whereby v is continuous since both G and H are Polish. It now follows that G has
a unique Polish group topology.

If H is a compact group, for every n € N the subgroup ¢ (ristg(n)) is compact
as the product of finitely many compact sets, so it is closed. Since ¥(ristg(n))
has finite index, it must be open. We conclude that the map ¥~ : H — G is
continuous, so by compactness, ¢ is a homeomorphism. Hence, G has a unique
compact group topology. (I

Under the additional assumption of being strongly just infinite, we can upgrade
our rigidity results.

Theorem 6.2. A strongly just infinite profinite branch group admits exactly two
locally compact Hausdorff group topologies: the discrete topology and the profinite
topology of a profinite branch group.

Proof. Let G < Aut(T,) be a strongly just infinite profinite branch group and
suppose ¥ : G — H is a bijective homomorphism with H a locally compact group.
Consider first the connected component H° < H. Since G is strongly just infinite
Y ~1(H°®) is either trivial or open with finite index.

Let us eliminate the latter case first. In this case, H is almost connected, and
since connected locally compact groups are compactly generated, H is compactly
generated. Theorem ensures H Cayley bounded, hence compact generation
implies H is compact. This is absurd since G has a unique compact group topology
by Theorem [6.1}

It is therefore the case that H° is trivial, so H is a totally disconnected locally
compact group. Assume that H is non discrete. By van Dantzig’s theorem, H
admits a basis at 1 of infinite compact open subgroups. Let U be such a subgroup.
Since compact open subgroups are necessarily commensurated, 1»~(U) is a com-
mensurated subgroup of G, whereby Theorem implies ¢~ 1(U) is open in G. It
now follows the map v is continuous, hence G ~ H as topological groups. (]
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7. EXAMPLES

We write (G, X) for a permutation group, where G is a group acting on the set
X. Let (A, X) and (B,Y) be finite permutation groups. We may form the group
BU(A, X) := BX x A where A ~ BX by permuting the domain. The group BX x A
is a permutation group via the following canonical action on X x Y:

(f,a).(z,y) := (a.x, f(a.x).y).
The wreath product of (B,Y) with (A, X), denoted (B,Y) ! (A, X), is the per-
mutation group (B (A4,X),X xY). Wreath products defined in this way are
associative.
For an infinite sequence ((4;, X;))ien of finite permutation groups, the set of
finite wreath products (A,,X;) ! -1 (Ao, Xo) forms an inverse system via the
obvious quotient maps

(Apt1, Xnt1) U L(Ao, Xo) = (An, X5) 1+ - 1 (Ao, Xo)-

We define
W((As, Xi)ien) := lim ((An, X0n) -+ 2 (Ao, X)) -
neN

The action of the finite wreath products (A4,,X,) V- (Ag, Xo) on the prod-
uct Xo X -+ x X,, induces an action of the group W((A;, X;)ien) on the tree T,
where (i) := |X;|. When the permutation groups (A,,X,) are transitive and
non-trivial for all n, the action of the group W ((A;, X;)ien) on T, witnesses that
W ((As, X;)ien) is a profinite branch group. The rigid stabilizers are also easy to
understand: If v € T}, lies on level n, then

ristg(v) ~ W((A4s, Xi)isn)-

7.1. Tterated wreath products. Many of the groups W ((A;, X;)ien) are strongly
just infinite, locally have derangements, and have uniform commutator widths. The
latter requires a theorem due to Nikolov.

Theorem 7.1 (Nikolov, [20, Corollary 1.4]). Suppose ((Ai, X:))ien is a sequence
of finite perfect permutation groups. If sup{cw(A4;) | i € N} = N < oo, then
W ((As, X;)ien) is perfect as an abstract group, and cw(W ((A;, X;)ien)) < N.

Via Theorem we isolate a rich family of profinite branch groups to which
our results apply.

Proposition 7.2. Suppose ((A;, X;))ien is a sequence of finite non-trivial perfect
transitive permutation groups. If sup{cw(A;) | i € N} < oo, then W((A;, X;)ien)
is strongly just infinite, locally has derangements, and has uniform commutator
widths.

Proof. Suppose sup{cw(4;) | i € N} = N, set G := W((A;, X;)ien), and let
T, be the rooted tree on which G acts, as discussed above. For each v € T,
with v € V,,, we have that ristg(v) ~ W((4;, Xi)i>n), S0 Theorem implies
ristg (v) is abstractly perfect and cw(ristg(v)) < N. The group G thus has uniform
commutator widths, and Theorem ensures G is strongly just infinite. That G
locally has derangements follows since ristg(v) ~ W ((A;, X;)isn)- O

Remark 7.3. We note a weak converse: if infinitely many of the A; are not per-
fect, then W ((A;, X;)ien) fails to be just infinite. Indeed, if ((A;, X;))ien is any
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sequence of finite transitive permutation groups, the group W ((A;, X;)ien) surjects
continuously onto the abelian group [ [,y Ai/D(4;).

An easy example of this situation is provided by the full automorphism group of
T,. The group Aut(T,) may be written as W((S (), [ai])ien) and thus surjects
onto [ [,y Z/2Z.

Corollary 7.4. Suppose ((Ai, X;))ien is any sequence of non-abelian finite simple
transitive permutation groups. Then, W ((A;, X;)ien) is strongly just infinite, locally
has derangements, and has uniform commutator widths.

Proof. Non-abelian finite simple groups have commutator width one by the cele-
brated solution to the Ore conjecture [I8]. The desired result then follows from
Proposition [l

7.2. The profinite completion of the first Grigorchuk group. Our discus-
sion of the first Grigorchuk group follows V. Nekrashevych’s work [19]. The first
Grigorchuk group, denoted G, is a four generated group that acts on the two reg-
ular rooted tree T,. Identifying the vertices of T with finite binary sequences in
the obvious way, the generators a, b, ¢, d of G are defined recursively as follows:

a.0"a):=1"a a.(17a):=0"«
b.(0"a) :=0"a.a b.(17a) :=1"ca
c.(0"a):=0"a.a c(l7a):=1"da
d.(0"a):=0"a d.(17a):=1"b.«

Letting o be the non-trivial element of Z/2Z, these generators can be given by
so-called wreath-recursion as follows: a := (1,1)0, b := (a,¢), ¢ := (a,d), and d :=
(1,b). These are forms of the generators upon realizing Aut(7%) as Aut(T%)% xZ/27Z.

Fact 7.5 (Grigorchuk). The first Grigorchuk group G1 enjoys the following prop-
erties:

(1) It is an infinite two group. (See |19, Theorem 1.6.1].)

(2) It is a branch group. (See [13, Corollary of Proposition 8].)

(8) It is just infinite. (See [13], Corollary of Proposition 9].)

(4) For all v € Ty, ristg, (v) is at most four generated. (See [2, Theorem 4.3])

Lemma 7.6. For every n > 0, the rigid level stabilizer ristg, (n) contains a de-
rangement of Viio.

Proof. Via [13, Proposition 8|, the subgroup K := (z,(z,1),(1,2)) < G; with
x := (ca,ac) is self-replicating. Ie. for each level n, the group K contains K"»
where v-th coordinate acts on the tree below the vertex v. The element x obviously
acts on as a derangement on the level two vertices of T5.

For an arbitrary level n > 0, that K is self-replicating ensures K < ristx (v) <
ristg, (v) for all v € V,,. We may thus find z, € ristx(v) so that z, is a derange-
ment of level 2 of the tree T5. The element z := [[ oy, =, € ristg, (n) is then a
derangement of V,, o, verifying the lemma. O

We are now ready to prove the desired result.

Theorem 7.7. The profinite completion of the first Grigorchuk group is a profi-
nite branch group which is strongly just infinite, locally has derangements, and has
uniform commutator widths.
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Proof. Via [I3], Theorem 9, Propostion 10], the profinite completion G, is isomor-
phic to the topological closure G; in Aut(7:). For each level n, the rigid level
stabilizer rist, (n) additionally contains stg, (m) for some m > n via [I3], Propo-
sition 10]. The subgroup ristg, () is then open in G, so G is a profinite branch
group. It follows further that ristz-(v) = ristg, (v).

Lemma now implies that G; locally has derangements. Fact ensures the
rigid stabilizer ristG—l(v) is topologically 4 generated for any v € Th, and since G is
a pro-2 group, rista(v) has commutator width at most 4 by classical results - e.g.
[8, Proposition 4.7]. The group G therefore also has uniform commutator widths.

Finally, that ristz-(v) has finite commutator widths implies D(ristz-(v)) is
closed. On the other hand, ristg, (v) is dense in ristz-(v), and D(ristg, (v)) has
finite index in ristg, (v), since G is just infinite. It follows D(ristz—(v)) has finite
index in ristg, (v). Theorem now implies G, is strongly just infinite. (Il

8. APPLICATION: BURGER-MOZES UNIVERSAL GROUPS

Let 74 be the d-regular unrooted tree for d > 3. Let V7T; and E7T; denote the
collection of vertices and edges. For a vertex v € V7Tg, the set E(v) denotes the
collection of edges with origin v. Recall [d] := {0,1,...,d — 1} and fix a map
c: ETq — [d] so that ¢ [gw)=: ¢, is a bijection for each v € V; the map c
is called a coloring. For each v € VT, and g € Aut(73), there is a bijection
gv : E(v) = E(g.v) arising from the action of g.

Definition 8.1. Let d > 3, F < &4, and ¢ : ET; — [d] be a coloring. The
Burger—Mozes universal group is defined to be

U(F):={g € Aut(Ta) | cguogooc,t € F for all v € VTy}.
The subgroup generated by all pointwise edge stabilizers in U (F') is denoted U (F)*.

The group U(F) is closed in Aut(7g) and so is a totally disconnected locally
compact Polish group. When F' is transitive, the isomorphism type of the group
U(F) is independent of the coloring ¢; indeed, any two groups built using different
colorings are conjugate in Aut(7;). We therefore will suppress the coloring.

Proposition 8.2 (Burger-Mozes, [0l Proposition 3.2.1|). Let d > 3 and let F <
Gq be transitive and generated by its point stabilizers. Then, U(F)% is a non-
discrete compactly generated totally disconnected locally compact Polish group which
is simple and has index two in U(F).

The group U(F)7 is often called the Burger—Mozes universal simple group.
The structure of a compact open subgroup of U(F)* is well-understood.

Proposition 8.3 (Burger—Mozes, [6, Section 3.2| (cf. [7, Proposition 4.3])). Let
d > 3, let FF < &y be transitive and generated by its point stabilizers, and set
H := Stabg(v) for some v € [d]. The group U(F)T has a compact open subgroup
isomorphic to W((Ai, Xi)ien) where

(Ai, X) = {(FJdD ifi=0
(H,[d] \ {v}) else.

We are now ready to apply our results on branch groups. Since &,, is solvable
for n < 4, we shall have to consider 7, with d > 6.
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Theorem 8.4. Suppose that d > 6 and that F < &4 is perfect and two transitive.
Suppose further the point stabilizers of F are also perfect. The group U(F)T then
enjoys the countable index property, the invariant automatic continuity property,
and the locally compact automatic continuity property.

Proof. Let H := Stabp(v) for some v € [d]. Since F is generated by its point
stabilizers, Proposition ensures that U(F)* has a compact open subgroup U
isomorphic to W((A;, X;))ieny where

R (017 B
(A, X) : {(H,[d]\{v}) else.

The groups (F,[d]) and (H,[d] \ {v}) are perfect transitive permutation groups,
so Proposition implies the compact open subgroup U is strongly just infinite,
locally has derangements, and has uniform commutator widths. Theorems [£.8] and
[5.10] and Corollary [5.11] imply U has the countable index property, the invariant
automatic continuity property, and the locally compact automatic continuity prop-
erty.

Let K be either a non-archimedean Polish group, a SIN Polish group, or a locally
compact Polish group and suppose ¢ : U(F)* — K is a homomorphism. The
restriction v [: U — K must be continuous, so taking O C K open, (¢ [¢7)~1(O)
contains an open subset of U. Therefore, 1)~ (O) contains an open subset of U (F)™,
and it follows that 1 is continuous. O

Corollary 8.5. For A, < &, the alternating group with n > 6, the Burger-Mozes
universal simple group U(A,)T has the countable index property, the invariant au-
tomatic continuity property, and the locally compact automatic continuity property.

Proof. The group A, is perfect, two transitive on [n], and generated by its point
stabilizers. The point stabilizers are A,,_1, so they are also perfect. Theorem @
now implies the corollary. ([

Of course, that the Burger—Mozes universal simple groups have these automatic
continuity properties follow from our results on profinite groups. As it is known
that similar results hold for infinite products of non-abelian finite simple groups,
[27), 28], one naturally asks if such examples can be found using infinite products
instead. It turns out this is not possible: There is no compactly generated locally
compact group which is topologically simple and contains an infinite product of non-
trivial finite groups as a compact open subgroup. This follows by considering the
quasi-center of such a group and applying [I, Theorem 4.8].

We conclude by classifying the commensurated subgroups of certain Burger—
Mozes universal simple groups.

Theorem 8.6. Suppose that d > 6 and that F' < &4 is perfect and two transitive.
Suppose further the point stabilizers of F' are also perfect. Then every commensu-
rated subgroup of U(F)% is ether finite, compact and open, or equal to U(F)*.

Proof. Let U be the compact open subgroup given by Proposition B3] and let O <
G := U(F)" be a commensurated subgroup of G. The group O N U is then a
commensurated subgroup of U, and since U is strongly just infinite, Theorem
implies O N U is either open or finite. If O N U is open, then O is open. Via [7]
Proposition 4.1], O is either compact and open or equal to G; in either case we are
done.
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We thus suppose that O N U is finite. If O is finite, we are done, so we suppose
for contradiction that O is infinite. The sets

Qn :={ucU||0:0NuOut <nand [uOu™": ONuOu™| < n}

form an increasing exhaustion of U by symmetric sets since O is commensurated;
recall for all n,m > 1, we have 2,Q,, C Q,,,. The group U has the Bergman prop-
erty via Theorem [I.8] whereby €, = U for some sufficiently large m. Appealing
to Theorem [4.5] we conclude there is O’ ~. O so that U normalizes O'.

The intersection O’NU is again finite, hence O’ is a non-trivial discrete subgroup
of G. The group U normalizers O’, whereby each o € O’ has an open centralizer.
The collection of elements with open centralizer in G, denoted QZ(G), forms a
normal subgroup. Since G is abstractly simple, we conclude that QZ(G) = G.
This is absurd in view of [I, Theorem 4.8]. O

Corollary 8.7. For A, < &, the alternating group with n > 6, every commensu-
rated subgroup of U(Ay)" is either finite, compact and open, or U(A,)".
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